Меню

Зарядное устройство для li ion аккумулятора на lm317

Зарядное устройство для разных аккумуляторов

LM317

Андрей Барышев, г. Выборг

В данной статье описывается изготовление несложного устройства, предназначенного для безопасной зарядки любых малогабаритных аккумуляторов. Под «безопасностью» здесь подразумевается возможность ручной установки зарядного тока, рекомендованного для каждого конкретного типа аккумулятора, а также автоматическое снижение выходного тока до нулевого значения после того, как аккумулятор зарядится полностью, до своего номинального напряжения. Такое зарядное устройство (ЗУ), конечно, не может служить полноценной заменой «фирменному» ЗУ, которое разрабатывается под конкретный тип аккумулятора и обеспечивает оптимальный режим его заряда. Но его удобно иметь под рукой, если вам часто приходится пользоваться различными типами аккумуляторов, а специальных «зарядок» к этим аккумуляторам нет. ЗУ позволяет заряжать аккумуляторы разных типов, с номинальным напряжением, начиная от 1.2 В («таблетки», «пальчиковые»), батареи сотовых телефонов различных моделей (напряжением 3.7…4.5 В), а также 9 и 12-вольтовые аккумуляторы. Зарядный ток может быть до 500 мА и выше, это зависит только от мощности примененных в схеме элементов.

Принцип работы

Как правило, рекомендуемый изготовителем зарядный ток аккумулятора составляет 1/10 от номинальной паспортной емкости СА, которая измеряется в А/ч (ампер/час) и указывается на его корпусе. То есть, например, для аккумулятора емкостью 700 мА/ч оптимальным будет ток заряда 70 мА. Поскольку ток в процессе зарядки будет уменьшаться, его первоначальное значение можно задать немного выше рекомендованного для того, чтобы ускорить процесс зарядки (если это необходимо). Но делать это следует в умеренных пределах, чтобы не допустить сильного нагрева аккумулятора. Максимальное значение начального зарядного тока рекомендуется устанавливать не более (0.2 – 0.3)СА.

В предлагаемой схеме предусмотрена ручная установка значения этого тока и возможность его визуального отображения и контроля в процессе зарядки при помощи светодиода и небольшого встроенного стрелочного прибора.

Рисунок 1. Принципиальная схема универсального ЗУ.

Принципиальная схема ЗУ приведена на рис. 1.

Постоянное выпрямленное напряжение поступает с выпрямителя Br1 на схему ограничителя тока с узлом индикации, собранном на транзисторах VT1, VT2 и светодиоде VD1. Затем, через стабилизатор напряжения на микросхеме DA1, ток заряда поступает на аккумулятор, подключенный к контактам J1 и J2. При этом регулируемый стабилизатор напряжения на микросхеме (МС) DA1 позволяет изменять напряжение стабилизации схемы при помощи переключателя S1 в соответствии с рабочим напряжением подключаемого аккумулятора. Если аккумулятор разряжен и его напряжение меньше значения напряжения стабилизации схемы, через резистор Р1 начинает течь ток, значение которого будет тем больше, чем сильнее степень разряда аккумулятора. В начале зарядки напряжение на этом резисторе превысит значение 0.6 В, откроется транзистор VT2, а VT1, наоборот, станет закрываться, ограничивая выходной ток схемы. Резистор R2 в цепи базы транзистора VT2 защищает его от перегрузки, а светодиод в его коллекторной цепи служит индикатором и светится в процессе заряда. Когда аккумулятор полностью зарядится и его напряжение сравняется с напряжением стабилизации МС DA1, ток через резистор Р1 упадет и транзистор VT2 закроется, что приведет к погасанию светодиода и полному открытию транзистора VT1. При этом напряжение на заряжаемом аккумуляторе не превысит значения напряжения стабилизации МС DA1 (установленное переключателем S1) и это защитит аккумулятор от перезаряда. Таким образом, переменный резистор Р1 является своеобразным «датчиком тока», изменяя сопротивление которого можно задавать первоначальный максимальный зарядный ток.

Конструкция и детали

Схема может питаться от любого малогабаритного трансформатора с напряжением на вторичной обмотке 12 … 20 В. Здесь подойдет, например, трансформатор от «зарядки» для сотовых телефонов старых типов (в «зарядках» новых типов, как правило, применяют импульсные схемы, не имеющие такого понижающего трансформатора). Переменное напряжение с этого трансформатора выпрямляется диодным мостом Br1 и, затем, сглаживается конденсатором C1 (эти элементы также можно взять из той же «зарядки», что и трансформатор). Емкость С1 может быть 470 мкФ и более, напряжение всех конденсаторов в схеме – не ниже 36 В. Диоды выпрямительного моста – любые выпрямительные на ток от 0.5 А (КД226, 1N4007 и др.), можно применить диодный мост типа КЦ403. Транзисторы VT1, VT2 – средней или большой мощности, n-p-n типа (например КТ815, КТ817, КТ805 c любой буквой или импортные аналоги типа PN2222). Допустимый ток коллектора таких транзисторов позволяет устанавливать ток заряда до 1.5 А, но при токах более 200 мА эти транзисторы нужно установить на небольшие радиаторы-теплоотводы. Светодиод может быть любой маломощный, например АЛ307. Микросхема DA1 – регулируемый стабилизатор напряжения LM317 или отечественный аналог КР142ЕН12А (с учетом цоколевки выводов). Такие стабилизаторы позволяют регулировать выходное напряжение в широких пределах – от 1.25 до 35 В. Вместо плавной регулировки выходного напряжения в данном случае удобнее использовать дискретный переключатель на несколько положений, соответствующих номинальным значениям тех аккумуляторов, которые предполагается заряжать этим ЗУ. Например: 1.2 В – 2.4 В – 3.6 В – 3.9 В – 9 В – 12 В. В приведенном здесь варианте ЗУ для этой цели используется малогабаритный галетный переключатель на 6 фиксированных положений. Нужные значения напряжений устанавливаются при настройке подбором резисторов R9 … R14, номиналы которых лежат в пределах от десятков Ом до нескольких кОм.

Ток заряда, помимо светодиода, можно контролировать при помощи дополнительного стрелочного микроамперметра, включенного на выходе схемы последовательно с нагрузкой (аккумулятором). Для этого подойдет, например, стрелочный индикатор уровня записи старых магнитофонов или какой-нибудь аналогичный. Можно, конечно, обойтись и без него, сделав схему с заданными фиксированными значениями зарядного тока. Тогда вместо переменного резистора Р1 нужно будет применить набор постоянных сопротивлений, переключаемых в зависимости от нужного значения зарядного тока. В этом случае понадобиться и дополнительный переключатель. Но использование отдельного стрелочного прибора для этих целей сделает работу с ЗУ гораздо более удобной, а сам процесс зарядки будет наглядно отображаться на всем ее протяжении. К тому же, полное погасание светодиода VD1 произойдет при снижении тока через него ниже 10-15 мА (в зависимости от типа), а это не будет соответствовать полной зарядке подключенного аккумулятора, через который еще будет протекать небольшой ток. Поэтому лучше ориентироваться по стрелке прибора.

Читайте также:  Зарядки для ноутбуков автомобильные в Екатеринбурге

Зарядное устройство для варианта с МС LM317 собрано на небольшой печатной плате размерами 25 × 30 мм (рис. 2). При использовании других типов МС следует учесть расположение их выводов, оно может отличаться.

Рисунок 2. Печатная плата ЗУ.

ЗУ можно собрать в небольшом корпусе подходящих размеров, например – от сетевого адаптера. Расположение деталей в корпусе такого варианта показано на рис. 3.

Настройка

Настройку предлагаемой схемы ЗУ начинают с установки необходимых зарядных напряжений на выходе. Для этого к клеммам J1 и J2 вместо аккумулятора подключают сопротивление около 100 Ом (мощностью не менее 5 Вт, лучше проволочное, иначе оно будет сильно греться!). Переключатель S1 установить в крайнее положение, соответствующее подключаемому аккумулятору, например, «1.2 В». Подбирая резистор R9, добиваются напряжения на выходных клеммах на 15 – 20 % больше номинального напряжения заряжаемого аккумулятора. То есть, в данном случае, выставляем на выходе около 1.4 В. Затем переключаем S1 в следующее положение (например «2.4 В») и подбором резистора R10 выставляем на выходе около 2.8 В… И так далее, для всех нужных значений. Максимальное напряжение, которое можно выставить таким образом, определяется максимальным значением выходного напряжения МС DA1, а входное напряжение схемы (на коллекторе VT1) должно превышать выходное не менее чем на 3 В для обеспечения нормального режима стабилизации микросхемы.

Зарядное устройство для разных аккумуляторов
Рисунок 3. Расположение деталей в корпусе ЗУ.

После установки всех необходимых значений выходного напряжения следует откалибровать стрелочный прибор – микроамперметр. Для этого подключаем в схему последовательно с ним тестер или амперметр, а к выходным клеммам – переменное сопротивление (проволочное, большой мощности) порядка 100 Ом и, меняя его значение, добиваемся на выходе максимального значения тока, на который будет рассчитано наше зарядное устройство (например, 300 мА). Вместо переменного здесь можно использовать и наборы постоянных сопротивлений. После чего подбираем шунт – сопротивление, которое припаиваем между контактами нашего стрелочного индикатора. Его надо подобрать так, чтобы при выбранном максимальном токе стрелка установилась в конец шкалы. Это сопротивление (его видно на рис. 3) для примененного стрелочного индикатора типа «М476» составило 1 Ом. В этом случае полное отклонение стрелки к концу шкалы будет соответствовать току заряда 300 мА. Шкалу можно проградуировать – нанести метки, соответствующие токам от 0 до 0.5 А, однако делать это необязательно. На практике вполне достаточно будет определять примерное значение тока.

Работа с ЗУ

Устанавливаем переключатель S1 в положение, соответствующее номинальному напряжению аккумулятора, который нужно зарядить.

При подключении к клеммам J1, J2 разряженного аккумулятора загорается светодиод, и стрелка прибора отклоняется к концу шкалы. С помощью переменного резистора Р1 выставляем максимальный ток зарядки для данного аккумулятора. По мере заряда аккумулятора яркость светодиода будет постепенно понижаться, а стрелка прибора приближаться к началу шкалы. На последней стадии заряда светодиод погаснет, но о полном заряде аккумулятора лучше делать вывод по стрелке прибора – когда она будет на «нуле» (то есть в самом начале шкалы). После этого аккумулятор может находиться в зарядном устройстве сколь угодно долго – перезаряда его не произойдет.

Если у вас «батарея» аккумуляторов (несколько штук, включенных параллельно или последовательно), то каждый из аккумуляторов лучше заряжать отдельно, а не в группе. Потому, что внутренние сопротивления каждого из них хоть незначительно, но отличаются от остальных, а это может привести к перезаряду или недозаряду отдельных элементов батареи, что отрицательно скажется на ее общей емкости. Например, для зарядки 4-х пальчиковых аккумуляторов лучше сделать четыре модуля (платы), подключенных на каждый аккумулятор отдельно. Трансформатор, выпрямитель (диодный мост) и сглаживающий электролитический конденсатор при этом могут быть общими, но рассчитанными на суммарную мощность нагрузки.

Зарядное устройство для разных аккумуляторов
Рисунок 4. Внешний вид собранного ЗУ.

Внешний вид зарядного устройства с органами управления показан на рис. 4.

Примечание

Резисторы R3…R8 можно, конечно, заменить одним (номиналом 150 Ом), а остальные контакты переключателя S1 соединить между собой параллельно. Но подключение отдельного резистора на каждый контакт (как показано в схеме рис. 1) позволяет при необходимости произвести более точную настройку на нужное выходное напряжение.

Источник

Схемы зарядных устройств с использованием LM317, LM338

В настоящей статье мы обсудим несколько простых схем зарядных устройств, предназначенных для зарядки аккумуляторов 12 В. Эти устройства очень простые и недорогие по своей конструкции, но при

этом обладают высокой точностью в поддержании выходного напряжения и тока.
Все предложенные здесь схемы контролируют выходной ток. Это означает, что поступающий в аккумулятор ток никогда не будет выходить за предварительно определенный, фиксированный уровень.

Примечание: Если вам нужно зарядное устройство для аккумуляторов с мощным током, то ваши потребности могут быть удовлетворены данными конструкциями устройств зарядки свинцово-кислотных аккумуляторов.

— Простейшее зарядное устройство для аккумуляторов 12 В

Как я неоднократно повторял во многих статьях, основным критерием безопасной зарядки аккумулятора является поддержание максимально входного напряжения, величина которого чуть ниже напряжения зарядки, указанного в спецификации аккумулятора, а также поддержание тока на уровне, не вызывающем нагрев аккумулятора.

При соблюдении этих двух условий вы можете заряжать любой аккумулятор, используя простую, приведённую схему.

В приведенной, простейшей схеме, выход трансформатора составляет 12 В. Это означает, что пиковое напряжение после выпрямления будет составлять 12 х 1.41 = 16.92 В. Хотя это несколько выше, чем 14 В, уровня полного заряда для аккумулятора, сам аккумулятор поврежден не будет.
При этом рекомендуется отключать аккумулятор, как только амперметр покажет нулевое значение напряжения.

Автоматическое отключение: Если вы хотите, чтобы приведенная выше схема обеспечивала автоматическое отключение зарядного устройства по завершению зарядки, вы легко можете добиться этого, добавив на выход биполярный транзистор, как показано ниже:

В данной схеме мы использовали общий эмиттер биполярного транзистора, к базе которого подключено 15 В. Это означает, что напряжение эмиттера никогда не опустится ниже 14 В.
А когда на контактах аккумулятора напряжение превысит 14 В, транзистор переходит в состояние обратного смещения, и просто осуществляет автоматический режим отключения. Вы можете изменять значение напряжения 15 В стабилитрона, пока не получите для аккумулятора напряжение примерно в 14.3 В.

Читайте также:  Что нам предлагает ближайший конкурент LFP традиционный Li ion

В результате первая схема преобразуется в полностью автоматическую систему зарядки АКБ, которую несложно сделать. Кроме того, поскольку здесь не используется конденсаторный фильтр, то 16 В применяется не в качестве непрерывного напряжения постоянного тока, а скорее, как 100 Гц выключатель. Это снижает нагрузку на аккумулятор, а также предотвращает сульфатирование пластин аккумулятора.

Почему важен контроль тока?

Зарядка аккумулятора любого вида может носить критический характер, и поэтому требует уделять ей определенное внимание. Когда сила тока, заряжающего аккумулятор, значимо высокая, контроль тока становится важным фактором.
Все мы знаем, насколько «умными» являются линейные стабилизаторы LM317, и не удивительно, что эти устройства применяются в большом количестве схем и приложений, требующих точное управление мощностью.

Представленная ниже схема зарядного устройства для аккумуляторов 12В с контролем тока на базе LM317 показывает, как можно сконфигурировать LM317, используя всего лишь пару сопротивлений и источник питания в виде стандартного диодного моста для обеспечения зарядки аккумулятора 12 В со всей возможной точностью.

Как это работает?

Стабилизатор подключается в обычном режиме, когда сопротивления R1 и R2 используются для требуемой регулировки напряжения. Входная мощность подается на LM317 с обычного диодного моста. После фильтрации через конденсатор C1 напряжение составляет примерно 14 вольт. Отфильтрованный постоянный ток с напряжением в 14 В, поступает на входной контакт стабилизатора.
Контакт регулировки LM317 подключён через фиксированное сопротивление R1 и переменное сопротивление R2. Изменяя величину сопротивления R2 может плавно менять выходное напряжение, подаваемое на аккумулятор. Без подключения сопротивления Rc вся схема вела бы себя, как простой источник питания.

Однако сопротивление Rc и транзистор BC547 на указанных позициях в схеме, обеспечивают возможность воспринимать ток, поступающий в аккумулятор.
Пока этот ток остается в требуемых безопасных границах, напряжение остается на заданном уровне. Однако при повышении силы тока стабилизатор снижает напряжение, ограничивая дальнейший рост тока и гарантируя безопасность аккумулятора.

Формула для расчета Rc:

R = 0.6/I, где I — максимальная величина требуемого выходного тока.

Для оптимальной работы LM317 будет требоваться наличие теплоотвода (радиатора).

Для наблюдения за состоянием зарядки аккумулятора используется подключенный к схеме потенциометр. Как только он покажет нулевое напряжение, аккумулятор можно отсоединить от зарядного устройства и использовать по назначению.

Принципиальная схема № 1

Для изготовления описанной выше схемы требуются следующие элементы;
R1 = 240 Ом
R2 = 10 кОм с предварительной установкой
C1 = 1000 мкФ/25 В
Диоды = 1N4007
TR1 = 0-14 В, 1 А

Как подсоединить потенциометр к схеме с LM317 или LM338?

Следующая схема (2) показывает, как правильно подключить 3-контактный потенциометр к схеме, использующей стабилизатор напряжения LM317 или LM338. Для подключения потенциометра к схеме его центральный контакт и любой боковой контакт соединяется с выходными контактами схемы. Третий контакт потенциометра не используется.

— Компактное зарядное устройство аккумуляторов 12В на базе LM338

Интегральная схема LM 338 представляет собой выдающееся устройство, которое может быть применено в неограниченном числе возможных приложений электронных схем. Ниже мы покажем, как использовать ее для получения автоматического зарядного устройства аккумуляторов 12 В.

Почему именно ИС LM338 ?

Основной функцией этой ИС является управление напряжением, и при незначительных, простых модификациях она может быть применена для управления током.
Схема зарядного устройства аккумуляторов идеально подходит для этой ИС и мы намерены изучить одну такую схему для создания автоматического зарядного устройства аккумуляторов 12 В с использованием ИС LM338.
Обращаясь к принципиальной схеме, мы видим, что вся схема построена вокруг ИС LM301, формирующей схему управления для выполнения отключения.
LM338 настроена в качестве контроллера силы тока, и как модуль прерывающего выключателя.

Использование LM338 в качестве регулятора, а операционного усилителя в качестве компаратора

Вся работа зарядного устройства может быть проанализирована с учетом следующих соображений: LM 301 используется в качестве компаратора и её не инвертированный вход подключается к опорной точке, создаваемой делителем напряжения, состоящего из R2 и R3. Напряжение, снятое с точки соединения R3 и R4, используется для установки выходного напряжения LM338 на уровень, который несколько выше требуемого напряжения зарядки – это примерно 14 вольт.
Данное напряжение подается на заряжаемый аккумулятор через сопротивление R6, включенное в схему в качестве датчика силы тока.
Сопротивление в 500 Ом, соединяющее входные и выходные контакты LM338, гарантирует, что даже после того, как схема будет автоматически отключена, аккумулятор будет постепенно заряжаться пока он остается подключенным к выходу схемы.
Кнопка пуска (start) используется для запуска процесса зарядки после подсоединения к выходу схемы частично разряженного аккумулятора.
Выбор величины R6 позволяет получать различные скорости зарядки в зависимости от емкости аккумулятора.

Функционирования схемы (согласно объяснениям +ElectronLover)

«После того, как заряжаемый аккумулятор будет иметь полный заряд, напряжение на инвертированном входе операционного усилителя станет выше установленного напряжения на неинвертированном входе LM338. Это моментально переключит логику усилителя на низкий уровень».

Согласно моим предположениям:
V+ = VCC — 74 мВ
V- = VCC — Ток зарядки x R6
VCC= напряжение на контакте 7 усилителя

Когда аккумулятор зарядится полностью, ток зарядки уменьшается. V- становится выше, чем V+, выход усилителя снижается, включая PNP и LED.
Кроме того, поскольку R4 через диод будет соединено с заземлением, то R4 становится параллельным R1, снижая фактическое сопротивление на управляющем контакте LM338 до уровня заземления.

Напряжение (LM338) = 1.2+1.2 x Reff / (R2+R3), где Reff — это сопротивление регулирующего контакта по отношению к заземлению.

Когда Reff понижается, выходное напряжение LM338 снижается, прекращая процесс зарядки.

Источник



Зарядное устройство для li ion аккумулятора на lm317

Зарядник Li-ion батарей на LM 317 и TL431.

Автор: МП42Б
Опубликовано 22.04.2010

Началось всё с того, что ко мне в руки попал Panasonic Lumix DMC-F1 с объективом Leica-DC-Vario-Elmarit

К нему в комплекте не было ничего, но аппарат обладает металлическим корпусом и делает прекрасные снимки, не смотря на свои 3,2 мегапикселя. Для размещения фотографий и картинок в интернете, лично по моему мнению, более чем достаточно.
Cнимки, сделанные Panasonic Lumix DMC-F1.

Читайте также:  Fxlion зарядные устройства для батарей A mount и V mount

Все фотографии к статье сделаны именно этим фотоаппаратом.
Первым делом надо было найти родной аккумулятор — Panasonic CGA-S001, Li-Ion, 3.6 В, 1200 мА/час

Поиски закончились безрезультатно, и пришлось купить аналог, аккумулятор ENKATSU Electric Pn CGA-S001 Li-Ion, 3.6 В, 680 мА/час

Но аккумуляторы надо чем-то заряжать, а вот цены на зарядные устройства совсем не понравились и было решено сделать зарядник самостоятельно.
Существует много разных схем зарядников для Li-Ion аккумуляторов, но покупать специализированные микросхемы не было желания и времени.
Схема была набрана как детские кубики с картинками из фрагментов разных схем и никаких особенностей не имеет.
Ток заряда в пределах 100 миллиампер, торопится мне некуда, да и батарея в этом режиме дольше проработает и качественней заряжается.
Настройка схемы трудностей не вызывает.
1. Без нагрузки устанавливаем подстроечным резистором 4,2 в на выходе.
2. Подключаем батарею.
3. Проверяем ток зарядки.
4. Ожидаем погасания светодиода.
5. Отключаем батарею.

Через некоторое время купил на барахолке плату от сотового самсунга из которой удалось отковырять живую LTC4054 и пустить её в дело, скорее из спортивного интереса.

Микросхема управляется лишь одним резистором, сопротивление которого можно рассчитать по формуле:

Напряжение питания микросхемы 4,25-6,5В, оптимальным считается напряжение 5В.

Источник

Зарядное устройство на LM317

После того как я собрал зарядное устройства на L200C, мне понадобилось еще одно зарядное устройство для АКБ на 6В. Микросхем L200C уже не было, зато было несколько LM317. На которых получаются неплохие полуавтоматические зарядные устройства. Найдя Datasheet на LM317, сразу нашел ту схему и собрал зарядное устройство

Заряжать аккумуляторы собрался от стареньких фонариков, в которых, кстати, стоят голимые зарядные, которых у меня очень много. Зарядное устройство работает на ура

Вот схема зарядного устройства на LM317

Схема зарядного устройства на LM317

Перечень компонентов зарядного устройства на LM317

C1 = 100нФ
C2 = 1000мФ нужен для подавления импульсов

R1 = 100
R2 = 240
R3 = 1к
R4 = 470
VT1 = КТ3102 Можно взять любой с подходящим коэффициентом передачи

Трансформатор, я брал первый, что под рукой был 9В 20Вт, после моста и фильтра у меня получилось 11В под нагрузкой, диодный мост ставил на 1N4007. Фильтрующий конденсатор, какой первый попался под руку

Теперь рассчитаем номинал R3+ R4 если вы решите заряжать другим напряжением. К примеру 14.4В для 12В АКБ. Рассчитывается по формуле R3+R4=(Vo/1.25-1)*R2, где Vo-напряжение окончания заряда. Для 14,4В R3+R4=(14.4/1.25-1)*240=2525Ом=2.2К+470Ом (подстроечный)

Для расчета максимального тока заряда рассчитаем Ri=0.6/Iз. Где Iз-ток заряда, который должен быть примерно в 10 раз меньше емкости АКБ, но можно и больше. Все ограничивается максимально разрешенным током, который указан на АКБ, и самим LM317, максимальный ток которого 1,5А. К примеру для зарядного тока в 1А, номинал Ri=0.6В/1А=0.6Ом. Даже при самом четком подборе номинала Ri, ток заряда может не соответствовать расчету, поскольку параметры VT1 имеют не слабый разброс. По Расчету напряжение полного открытия транзистора 0,6В. . Так же стоит помнить при расчете что максимальная мощность рассеивания LM317 всего 20Вт. Его можно рассчитать по формуле P(Vi-Vo)*Iз.

Вот печатная плата зарядного устройства на LM317

Вот печатная плата зарядного устройства на LM317

Скачать печатную плату
Пароль от архива jhg561bvlkm556

Настройка зарядного устройства на LM317:

1.После полной сборки подключаем устройство в сеть. После моста и фильтрующего C1,C2 должно быть напряжение на вольта 3-5 выше, чем вы планируете заряжать АКБ. Такой запас необходим потому что на LM317 падение напряжения где-то 1,25В + под нагрузкой напряжение просядет.

2.Выставляем напряжение зарядки согласно расчетному. Это напряжение должно быть в 1,2 раза выше напряжения АКБ. Снимаем проверяемое напряжение обязательно после защитного диода, поскольку на нем тоже падение в 0,6В

3.При проверки и настройке подключаем все к аккумулятору и проверяем ток заряда, он может отклонятся в любую сторону. Так АКБ должен простоять 10 часов, если вы рассчитывали ток заряда 1:10 от емкости АКБ. После зарядки на клеммах должно быть расчетное конечное напряжение и ток зарядки где-то 20-30мА. Если все верно, зарядка прошла успешна

Так же для защиты своего АБК используйте защиту от переполюсовки для аккумуляторов

На этой ноте я с вами прощаюсь и желаю удачи в повторении

Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую универсальное зарядное устройство

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Зарядное устройство 12В 1.3А

Зарядное устройство 12В 1.3А

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Универсальное зарядное устройство 12-24В 10А

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150А\ч

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
С ув. Admin-чек

Источник

Adblock
detector