Меню

Урок 5 Блок питания И еще немножко про интейсы SATA и IDE



Блок питания. Интерфейсы SATA и IDE.

Урок 5. Блок питания. И еще немножко про интерфейсы SATA и IDE.

Устройство для подачи питания на все комплектующие системного блока. Без блока питания у вас просто ничего не включится. Основная характеристика блока питания — это его мощность, измеряемая в ваттах. Самый маломощный блок для игровых компьютеров составляет 350W. НО, на сегодняшний день существует куча навороченных агрегатов компьютерного хозяйства (типа новейшие видеокарты), которые, «посмотрев» на ваш дохленький блок питания в 350W, с глубочайшим вздохом и слезами на микросхеме, будут работать. Ой, я сказал — «Будут работать!», да, они будут работать! Но это «работать» будет одно название, а не работа! Они будут работать не на полную мощность, так как для большинства новых видеокарт требуются блоки питания от 400W и выше, а плюс еще все остальные детальки! Кстати, в некоторых случаях, если стоит слабенький блок питания — может неисправно работать вся система.

Здесь есть один очень весомый нюанс, если вы собираетесь купить хороший игровой компьютер на основе мощного процессора и мощной видеокарты — вам нужен блок помощнее. Допустим, если надо компьютер на основе трехядерного процессора и видеокарты NVIDEA 9800 GT, блока питания мощностью 350W будет мало, лучше приобрести блок мощностью 500W. Если же вы поставите 350-ку, то в лучшем случае у вас компьютер запустится, но при работе в видеоприложениях, или в трехмерных играх будет выключаться. А в худшем: он просто начнет очень плохо работать или вообще не включится. Поэтому тоже будьте внимательны при покупке блока питания. Есть компьютеры, в которых стоит блок питания мощностью 350W, с мощным процессором и видеокартой. Такие блоки называются брендовыми. Т.е. если поменять на дешевую 350-ку, то этот компьютер может не включиться. Еще огромный плюс этих блоков в их живучести, т.е. если у вас резкий скачок или спад напряжения в сети, и нет защиты — в худшем случае сгорит сам блок питания, что тоже очень редко. В большинстве случаев — компьютер просто выключается. Если сравнить с дешевыми вариантами, то у вас есть риск спалить все хозяйство внутри системного блока. Я бы рекомендовал покупать качественные блоки питания, стоят они не намного дороже, а выгоды очевидны.

Естественно, что на блоке питания присутствуют разъемы, и провода для подключения. На рисунке выше я представил вам блок питания в более близком виде:

1. Это тумблер включения и выключения, если выключен то компьютер не включите.

2. Это разъем для подключения к сети высокого напряжения.

Разъем один, а вот проводов от блока идет целая куча, правда практически все одинаковые:

Блок питания

1. Под единичкой показан провод, который вставляется в саму материнскую плату. Тем самым обеспечивая ее напряжением. Правда он в двух частях, но вставляются эти части в один разъем.

2. А этот используется для подключения питания к винчестеру, приводу и т.д.

В дополнение к вышесказанному хочу вам сказать, что практически все оборудование компьютера подключается к материнской плате и блоку питания. Возьмем за пример винчестер. На любом винчестере (внутреннем) сзади есть два выхода, один для подключения к материнской плате, другой к блоку питания. Тоже самое касается DVD-приводов и видеокарт, за исключением слабых, им хватает напряжения и от материнской платы. «Материнка» тоже подключается к блоку питания. В следующих уроках вы сможете поглядеть на наглядный пример этих разъемов.

Сейчас уже есть и другие разъемы для подключения, использующие SATA интерфейс, принцип один и тот же, только провод уже будет выглядеть по другому(черный конец провода на картинке с переходником справа):

Сейчас разъясню вам, что это такой за интерфейс SATA. Проще говоря, интерфейс – это разъемы, которые использовались, для подключения устройств. Раньше для подключения винчестера и привода использовался интерфейс IDE, сейчас в большинстве используется SATA. Естественно, что разъемы у того же винчестера SATA и винчестера IDE – разные, и по внешнему виду их легко можно отличить. Интерфейс IDE имеет ряд недостатков перед SATA.

Во первых, провод для подключения с интерфейсом IDE заметно шире, чем при SATA. Это вы можете сравнить на рисунках, которые я вам представил. Естественно, что это не очень удобно. И еще интерфейс SATA работает быстрее, чем IDE, тем самым повышая скорость копирования и записи информации. Это очень большие преимущества на мой взгляд. Сейчас часто встречаются материнские платы, которые поддерживают два этих интерфейса. Т.е. вы сможете подключить устройства с интерфейсом IDE и SATA, но не стоит забывать, что IDE – устаревающая технология, и если перед вами станет выбор покупать винчестер или привод – берите обязательно с интерфейсом SATA, на глаз, как я и писал выше, их отличить очень просто:

Винчестер с интерфейсом SATA

Винчестер с интерфейсом IDE

Как видете, отличить очень даже просто. Что касается DVD-приводов, у них все точно также как и у винчестеров, просто функции другие, а разъемы такие же.

Источник

Разъем ide на блоке питания. Переходник SATA Molex: что это

Приводим справочные данные на цветовую маркировку и расположение проводов в гнёздах и штекерах ПК. Распиновка и подключение проводов блока питания и других основных модулей компьютера должно быть проведено аккуратно и безошибочно, чтоб не допустить замыкания при работе. Выясним, какое напряжение подается и на какие провода.

Цветовая маркировка

В обычных БП ПК используется 9 цветов, обозначающих роль проводов:

  • Черный — общий провод, он же заземление или GND
  • Белый — напряжение -5V
  • Синий — напряжение -12V
  • Желтый — подает +12V
  • Красный — подает +5V
  • Оранжевый — подает +3.3V
  • Зеленый — отвечает за включение (PS-ON)
  • Серый — POWER-OK (POWERGOOD)
  • Фиолетовый — дежурное питание 5VSB

Все разъёмы компьютера — название и фото

Всего при работе БП используется 8 типов разъемов, их вид и названия представлены на фото. Чтобы включился блок питания AT-ATX — надо замкнуть GND и PWR SW коннекторы. Он будет работать до тех пор, пока они замкнуты.Если используете его отдельно — ставьте на эти контакты кнопку.

Распиновка проводов разъема блока питания

Распиновка на разъем питания жесткого диска sata и esata

Схема распиновки контактов питания видеокарты

Как получить другое напряжение с БП

Встречаются ситуации, когда подключаемое устройство требует для своей работы такого напряжения, которое БП выдавать не способен. В этих случаях приходится извращаться. Допустим, наше дополнительное устройство (пусть это будет освещение) работает от напряжения 8.7 вольт. Его мы можем получить комбинацией проводов, которые выдают +12V и +3.3V. Для удобства, все возможные комбинации приведены в таблице.

The ATX specification requires the power supply to produce three main outputs, +3.3 V (±0.165 V), +5 V (±0.25 V) and +12 V (±0.60 V). Low-power −12 V (±1.2 V) and 5 VSB (standby) (±0.25 V) supplies are also required. A −5 V output was originally required because it was supplied on the ISA bus, but it became obsolete with the removal of the ISA bus in modern PCs and has been removed in later versions of the ATX standard.

Originally the motherboard was powered by one 20-pin connector. Current version of ATX12V 2.x power supply provides two connectors for the motherboard: a providing additional power to the CPU, and a main , an extension of the original 20-pin version.

ATX connector pinout

5 VDC Standby Voltage (max 10mA) 500mA or more typical

/PS_ON activated by pressing and releasing the power button while the power supply is in standby mode.
Activating /PS_ON turns on the power supply.

In several power supply units pin-12 may be Brown (not Blue), pin-18 may be Blue (not White), and pin-8 may be White (not Gray). In addition, some PSU violate color coding of wires.

Pin 9 (standby) supply 5V even when PSU is turned off. Pin 14 goes from 0 to 3.7 when PSU switch is turned on.

Shorting pin 14 (/PS_ON) to GND (COM) causes power supply to switch ON and PWR_OK to change to +5V.

Эта статья обещает быть достаточно разъяснительной и теоретической. Сегодня мы подробно рассмотрим столь актуальный в наше время технологий предмет — переходник. Это будет переходник SATA Molex («САТА Молекс»). В этой статье вы найдёте ответы на интересующие вас вопросы, например, что это такое, для чего он предназначен, какую функцию выполняет, и другие.

SATA Molex

Начнём с того, что SATA (сата) — это просто аббревиатура, но несколько непонятная. В отношении к компьютерной технике расшифровка будет следующей — Serial Ata The Acronym. Если говорить просто и понятно, то САТА — это последовательный интерфейс, появившийся в 2003 году. Он пришел на смену разъёму IDE (АйДиИ), который в последующем был переименован в PATA (пата) — parallel ATA, так как это был более скоростной разъём, предполагающий передачу данных со скоростью до полутора гигабит в одну секунду. Этим самым объясняется и физическая смена непосредственно разъёма подключения к жесткому диску, в результате чего возникла необходимость в наличии специального устройства. Здесь мы говорим именно про переходник питания SATA (САТА). Он нужен для подключения новых жёстких дисков к старым компьютерам, которые не имеют в наличии подобного разъёма.

Для чего нужен переходник SATA Molex («САТА Молекс»)?

На сегодняшний день все современные имеют в комплектации разъём Molex. Несмотря на это, сам переходник SATA Molex («САТА Молекс») имеет актуальность и достаточно высокий спрос и по сегодняшний день. Почему? Например, вы хотите установить на свой персональный компьютер дополнительное оборудование в виде жёстких дисков (или в виде дополнительного привода компакт-дисков). Однако имеющиеся свободные уже заняты. Что будете делать в такой ситуации? Вам на выручку придёт переходник SATA Molex («САТА Молекс»).

Что это такое?

По сути, переходник SATA Molex — это наипростейшее устройство, которое представляет собой два коннектора для подключения к разъёмам, соединённых между собой четырьмя отрезками кабеля. Ранее устройства с разъёмом Molex запитывались с помощью четырех следующих контактов: +5В; земля; земля; +12. Разъём питания САТА имеет пятнадцать контактов. Он разбит на пять групп и имеет последовательность +3,3В; земля; +5В; земля; +12В.

Также имеется и менее распространенный переходник SATA Molex («САТА Молекс») для подключения питания к приводу компакт-дисков от ноутбука. Данное устройство имеет более компактный разъём за счёт того, что у него всего шесть контактов +5В (вместо пятнадцати) и земля.

Распиновка

Давайте рассмотрим более подробно Molex SATA (переходник). Распиновка этого устройства, как и сам разъём, довольно проста.

Первая группа контактов в САТА-разъёме — это напряжение в +3,3 вольта. В переходнике эта группа не используется, так как разъём Molex совершенно не имеет такого напряжения.

Вторая группа контактов САТА — земля.

Третья группа контактов разъёма имеет напряжение в +5 вольт. Нужно отметить, что она совмещается с первым контактом.

Четвертая группа контактов разъёма — земля, она совмещена с третьим контактом Molex (молекс).

Пятая группа контактов разъёма САТА (+12 вольт) совмещается с четвёртым контактом разъёма Molex.

Переходник можно приобрести в любом компьютерном магазине или в отделе радиодеталей. Эти устройства имеют совершенно разную длину: от нескольких сантиметров до нескольких десятков сантиметров. Цена на самые распространенные переходники составляет примерно один доллар. Также в продаже имеются переходники не только один к одному. Бывают переходники с одного Molex-разъёма на несколько САТА-разъёмов. Это очень удобно в тех случаях, когда на вашем блоке питания уже все свободные разъёмы закончились, при этом в наличии и комплектации один Molex (молекс), но у вас есть необходимость включить несколько САТА-устройств. Тут вам поможет уже описанный в статье прибор.

Источник

Для чего нужен разъём IDE

Разъем IDE, который еще называют ATA, PATA, — это так называемый параллельный интерфейс для подключения накопителей к материнской плате. В настоящее время вытеснен последовательным интерфейсом SATA.

Если не вдаваться в технические подробности, то параллельный и последовательный порты отличаются способом передачи данных. По параллельному порту биты информации передаются одновременно — то есть параллельно друг другу, в последовательном — друг за другом.

IDE. Фото: Depositphotos

Из-за этих особенностей внешний вид как порта, так и соединительного кабеля значительно отличаются. Так, IDE и SATA можно легко отличить визуально. Первый — это широкий многожильный шлейф, а второй больше похож на обычный кабель, как, например, для зарядки мобильного телефона.

Читайте также:  Блок питания взамен батареек

SATA. Фото: Depositphotos

Шлейфы IDE бывают на 40 или 80 жил. Они отличаются в первую очередь, скоростью работы. Кроме того, еще есть кабели на 34 жилы для подключения флоппи-дисковода. Такие широкие кабели очень неудобно размещать в корпусе ПК. А вот SATA-кабель занимает гораздо меньше места, его проще подключить и извлечь. Однако выполняют они одинаковую функцию. Это, конечно, подключение накопителей: жестких дисков, оптических приводов, флоппи-дисководов.

Флоппи-дисковод. Фото: Depositphotos

Примечательно, что на один и тот же шлейф IDE можно подключить сразу два накопителя. Для таких случаев на торце диска или привода присутствуют несколько пар штырьков, соответствующих разным режимам работы. В зависимости от условий одну из пар нужно замкнуть специальной перемычкой — джампером. Обычно первый накопитель переводится в режим Master (ведущий), второй — в Slave (ведомый).

Встретить интерфейс IDE можно только в довольно старых компьютерах. Комплектующие с разъемами такого формата продаются на вторичном рынке, при этом стоят очень дешево. Найти DVD-привод или жесткий диск можно рублей за 100-150. Понятное дело, что использовать устаревшие комплектующие в современных ПК не имеет практически никакого смысла. Однако иногда бывает необходимо прочитать данные со старого накопителя или подключить оптический привод, чтобы записать или считать диск с данными. В этом случае можно воспользоваться специальным переходником IDE — SATA или IDE — USB. Они продаются в магазинах компьютерной техники, поэтому искать по комиссионкам или заказывать из Китая, скорее всего, не придется.

Molex. Фото: Depositphotos

Для питания старого HDD или привода понадобится кабель питания типа Molex, которые все еще присутствуют на современных блоках питания, хотя уже и редко используются. Разве что как раз для подключения старых комплектующих, плат расширения и устройств вроде регулятора оборотов корпусных вентиляторов. Также можно использовать переходник c питания SATA на Molex или адаптер питания, идущий в комплекте с переходником.

Работает такая схема и в обратном направлении. Можно подключить современный жесткий диск к старой материнской плате, на которой нет SATA. Для этого тоже понадобится переходник.

Источник

IDE ATA/ATAPI контроллеры

Часть 1

Сегодня, уважаемые читатели, я бы хотел поговорить с Вами о том, что такое ATA/ATAPI контроллеры, откуда появился интерфейс IDE и что это такое?

Для начала давайте с Вами усвоим необходимый минимум теории. Когда-то очень давно (еще в прошлом тысячелетии :)) фирма «Western Digital» разработала параллельный интерфейс подключения жестких дисков.

Новым и важным в этом было то, что контроллер (управлявший всеми операциями ввода-вывода) был интегрирован в сам привод, а не вынесен в виде отдельной платы расширения, как раньше. Это позволяло:

  1. убыстрить работу устройства
  2. удешевить производство
  3. и упростить схему обмена данными с накопителем

Давайте сразу разберем основные аббревиатуры, чтобы потом не путаться. Сначала интерфейс получил название «IDE» (Integrated Drive Electronics — «Диск со встроенным контроллером»), но проблема заключалась в том, что это было слишком общее определение, под которое могло подойти много чего, имеющего «диск» и «контроллер». В связи с этим был разработан стандарт, который получил название «ATA» (анг. AT Attachment). После появления устройств SATA, это название было изменено на PATA (Parallel ATA).

Многие компьютерщики иногда говорят IDE вместо ATA или — наоборот. В принципе, это — одно и то же, просто правильнее — ATA 🙂

Поначалу стандарт работал только с жёсткими дисками, но затем был изменен для работы и с другими устройствами. К таким устройствам относятся приводы CD и DVD-ROM, магнитооптические диски и ленточные накопители. Этот новый (расширенный) стандарт стал называться «Advanced Technology Attachment Packet Interface» (ATAPI), и поэтому полное его название выглядит как — «ATA/ATAPI».

Вот как выглядят разъемы этого образца на материнской плате (два нижних, верхний — флоппи диск):

IDE контроллеры - разъемы на плате

Данный интерфейс развивался во времени и одним из значимых этапов стал переход от программного ввода-вывода данных (PIO — Programmed input-output) к прямому доступу к памяти (DMA — Direct Memory Access). Что это значит? При использовании программного метода ввода-вывода считыванием данных с диска управлял центральный процессор, что приводило к абсолютно лишней на него нагрузке, так как ЦП приходилось заниматься еще и дисковыми операциями.

В то время пальму первенства держал интерфейс обмена данными, носящий название скази («SCSI» — Small Computer System Interface). Он выгодно отличался высокой скоростью передачи и применялся в высокопроизводительных серверных платформах. Поэтому режим DMA для устройств IDE стал мощным толчком для дальнейшего развития стандарта.

При прямом доступе к памяти потоком данных управляет уже сам накопитель, считывая данные в память и обратно без участия процессора. Роль последнего сводится лишь к отдаче команд на выполнение того или иного действия. При этом жесткий диск выдает сигнал запроса на операцию прямого доступа к памяти. Если операция доступа данный момент возможна, контроллер дает «добро» и диск начинает выдавать данные, а контроллер считывает их в оперативную память (без участия CPU).

Вот, к слову, как выглядит плата типичного контроллера, устанавливаемая производителями на свои изделия:

Плата контроллера жесткого диска

Главный чип здесь — MCU (Microcontroller Unit), он и осуществляет управление всеми операциями ввода-вывода накопителя и контролирует его работу.

Примечание: Операция прямого доступа к памяти возможна только тогда, когда такой режим работы поддерживается одновременно «BIOS», контроллером и операционной системой. Иначе система будет работать используя предыдущий режим программного ввода-вывода (PIO).

Всю хронологию развития и достижений на пути становления ATA интерфейса можно представить в виде следующей сводной таблицы.

История развития стандарта ATA

Как видите (из второй колонки) скорости обмена данными через интерфейс постоянно увеличивались, что, в свою очередь, на этапе внедрения ревизии «Ultra ATA Mode 4» (он же — Ultra DMA/66 со скоростью передачи 66 мегабайт в секунду) вызвало необходимость внедрения нового интерфейсного кабеля с удвоенным количеством проводников (четвертая колонка в таблице).

Для сравнения — оба кабеля рядом:

Шлейфы данных ATA

На цвет не обращайте внимания 🙂 Кабель слева имеет 80 жил (проводников), справа — 40. Как мы видим из таблицы, раньше все кабели имели именно 40 жил. Но дело в том, что с ростом скоростей передачи данных резко возросла роль взаимных помех и наводок отдельных проводников в кабеле друг на друга.

Именно поэтому был введен новый кабель. Причем все дополнительные двадцать пар его проводов это — проводники заземления (Ground), чередующиеся с проводниками информационными. Такое чередование уменьшает емкостную связь между отдельными жилами и, таким образом, сокращает взаимные наводки. Да и если подумать логически, что там еще может быть, если самих контактов (штырьков) на устройстве осталось все так же 40 (без учета «ключа») — по одному на каждый провод. Последующим (более быстрым режимам) «UDMA5» и «UDMA6» также требовался 80-жильный кабель.

Читайте также:  Блок питания для led модуля

Обратите Ваше внимание на колодки обоих кабелей. У них есть «ключ» (пластмассовый «П» образный выступ), который исключает неправильное подключение к разъему. Мало того, у 80-ти жильного кабеля на интерфейсе отсутствует одно из центральных гнезд (на материнских платах тогда начали устанавливать специальный IDE-разъем без центрального контакта), который также выполняет функцию дополнительного «ключа».

Но, — продолжим, чтобы закончить тему о кабелях. При возросших скоростях передачи данных появляется еще одно ограничение — на максимально допустимую длину кабеля. Стандарт ATA всегда устанавливал эту границу в 46 см. В продаже, к примеру, широко распространены кабели от 44-х до 48-ми сантиметров. Встречаются также изделия откровенно превышающие рекомендованный предел и, как Вы понимаете, их использование вряд ли можно рекомендовать.

Чтобы более полно осветить тему добавлю, что бывают еще, так называемые, «круглые» ATA шлейфы.

Нестандартный IDE шлейф

Выглядят они более благородно, чем свои «плоские» собратья, но, Вы же понимаете, что это снова — не стандарт, а — изделие сторонних производителей, которое должно обеспечивать работу на соответствующих скоростях и соответствовать заявленным характеристикам. Нам надо понимать, что ключевое слово здесь — должно ! 🙂

На пути своего развития стандарт ATA преодолел много препятствий, которые были заложены именно «в железе». Сначала это было ограничение, связанное с геометрией накопителя. Стандартный PC BIOS поддерживал жестко определенное предельно возможное число головок, секторов и цилиндров из которых состоят жесткие диски (максимально адресуемый размер пространства равнялся тогда 528 мегабайтам).

Это аппаратное ограничение было преодолено введением не физической (как раньше), а логической (условной) адресации, не имеющей уже ничего общего с реальной геометрией накопителя. Появились режимы работы для «больших» дисков «Large» и его преемник — «LBA» (Logical Block Address). Это позволяло адресовать (использовать) уже 8,46 гигабайта дискового пространства.

Со временем, когда объем жестких дисков опять увеличился, было преодолено и это ограничение и планка поднялась до 32-х гигабайт, а затем (с введением 28-ми битного режима адресации) — до невиданного ранее объема в 137 гигабайт ! 🙂 Запись 28-ми битного числа, организована методом вписывания его отдельных частей в соответствующие регистры самого диска. Последние спецификации ATA поддерживали уже 48-ми битную адресацию, расширяя возможный предел адресации до 144-х петабайт (1 петабайт — 1024 терабайта).

И тут, казалось бы, когда все ограничения на объем используемых дисков были так героически преодолены выяснилось, что параллельный интерфейс ATA (в том виде, в котором он существует на данный момент) не подходит для дальнейшего развития стандарта. Попытки увеличить его пропускную способность сводятся на нет возникающими вследствие возросших скоростей наводками в кабеле. Укорачивать сам кабель? Тоже не выход из положения.

И вот тут на сцену выходит новый стандарт передачи данных — «SATA» (Serial ATA).

Новые разъемы SATA

Это — переработанный, и улучшенный вариант предыдущего стандарта. Как Вы помните, АТА — параллельный интерфейс (Parallel), в то время как SATA — последовательный (Serial). В это время и происходит переименование отживающего свое «ATA» в «PATA» (Parallel ATA), однозначно указывая, таким образом, что это — параллельный интерфейс передачи данных.

Несмотря на то, что последовательный способ передачи медленнее, в данном случае это компенсируется возможностью работы на более высоких частотах. Отпадает необходимость в синхронизации каналов. Также сам интерфейсный кабель гораздо более помехоустойчив (все его 7 жил отдельно экранированы). Это, в свою очередь, дало возможность довести максимальную длину кабеля до одного метра.

В стандарте «SATA» Изменился также сам принцип передачи данных. Он получил название LVDS — низковольтная дифференциальная передача сигналов (англ. low-voltage differential signaling). Повышение скорости передачи и использование самосинхронизирующихся кодов позволяют отправлять больше данных по меньшему количеству проводов, чем в случае параллельной шины.

За время своего существования новая спецификация успела сменить несколько ревизий (поколений), которые характеризуются все увеличивающейся пропускной способностью интерфейса.

  • SATA-1 150 МБ/с (мегабайт в секунду)
  • SATA-2 300 МБ/с (мегабайт в секунду)
  • SATA-3 600 МБ/с (мегабайт в секунду)

Тут надо понять следующее: все эти бешеные скорости это — скорость передачи данных по интерфейсному кабелю (от контроллера, с использованием предварительного кеширования и т.д.). И какая бы большая цифра здесь не была написана, реально нас должна интересовать скорость чтения/записи непосредственно с самих пластин (блинов) жесткого диска. Ведь именно она является узким местом в его быстродействии. Другое дело, что в новых моделях реализованы более совершенные алгоритмы по работе с данными, оптимизирована работа с кеш памятью устройства и т.д.

На данный момент (в стандартных настольных конфигурациях) Вы вряд ли увидите скорость чтения с пластин, превышающую 100-120 мегабайт в секунду. Как видите, эта цифра только сейчас подошла к пределу пропускной способности старого стандарта Ultra ATA 133 (133 мегабайта в секунду). Как мы говорили выше, скорости передачи в SATA достигаются за счет другого, а все эти «300», и «600» мегабайт в секунду (три и шесть гигабит в секунду, соответственно) — работа на перспективу (твердотельные SSD накопители), а при их чрезмерном выпячивании — бессмысленная реклама, сбивающая с толку неподготовленного пользователя.

О чем это мы? Ах, да! О преимуществах сата: надо также помнить, что каждое SATA устройство располагается на отдельном канале (контроллере), поэтому отпадает необходимость в их конфигурировании с помощью перемычек (джамперов).

Хотя, справедливости ради стоит отметить, что на ранних этапах внедрения нового стандарта на SATA жестких дисках можно было обнаружить джамперы, но они использовались редко и то лишь для принудительного перевода накопителя SATA-2 в режим SATA-1 (для совместимости с первым поколением контроллеров).

Вот так друзья, коротко мы разобрали основные понятия, связанные с интерфейсом ATA/ATAPI. Теперь смело нажимайте на ссылку «следующая», переходим к практической части материала.

О том, как правильно подключать кабели передачи данных, смотрите в видео ниже:

Источник

Adblock
detector