Меню

Универсальное зарядное устройство для всех типов аккумуляторов шуруповертов 18 вольт



Зарядные устройства 18 вольт для шуруповёрта в Екатеринбурге

  • Блоки питания для ноутбуков
  • Источники питания, зарядные устройства для фото- и видеотехники
  • Зарядные устройства и адаптеры для мобильных телефонов
  • Аккумуляторы для электроинструмента
  • Зарядные и пуско-зарядные устройства для аккумуляторов
  • Зарядные устройства для стандартных аккумуляторов

Аккумуляторный блок Pitatel TSB-024-HIT18B-20C 18 В 2 А·ч

ЗУ-А 18-0.4, Зарядное устройство для шуруповертов (18В)

ЗУ-А 18-0.4, Зарядное устройство для шуруповертов (18В)

Аккумуляторный блок BLACK+DECKER BL2018-XJ 18 В 2 А·ч

Аккумуляторный блок Pitatel TSB-033-MAK18A-20C 18 В 2 А·ч

Аккумуляторный блок Pitatel TSB-033-MAK18A-20C 18 В 2 А·ч

Универсальное зарядное устройство для шуруповерта (18V)

Универсальное зарядное устройство для шуруповерта (18V)

Зарядное устройство для шуруповерта 18В

Зарядное устройство для шуруповерта 18В

Аккумуляторный блок Pitatel TSB-013-DE18A-30M 18 В 3 А·ч

Аккумуляторный блок Pitatel TSB-013-DE18A-30M 18 В 3 А·ч

Адаптер (блок) питания 18V, 0.5A, 4.0mm x 1.7mm (HKA-18221, 90500856, AC-200-N-18-500), трансформаторный, зарядное устройство для Ni-MH, Ni-CD аккумуляторной батареи 14.4V, для шуруповерта Black and Decker AST14XC, CD14C, EPC14, EPC14CA, EPC14CA(H), EPC14

Адаптер (блок) питания 18V, 0.5A, 4.0mm x 1.7mm (HKA-18221, 90500856, AC-200-N-18-500), трансформаторный, зарядное устройство для Ni-MH, Ni-CD аккумуляторной батареи 14.4V, для шуруповерта Black and Decker AST14XC, CD14C, EPC14, EPC14CA, EPC14CA(H), EPC14

Зарядные устройства Интерс ЗУ 18В Li-ion

Зарядные устройства Интерс ЗУ 18В Li-ion

Аккумуляторный блок Pitatel TSB-033-MAK18A-21M 18 В 2.1 А·ч

Аккумуляторный блок Pitatel TSB-033-MAK18A-21M 18 В 2.1 А·ч

Зарядное устройство для Интерскол ДА-18ЭР, 18В, Li-ion с индикатором

Зарядное устройство для Интерскол ДА-18ЭР, 18В, Li-ion с индикатором

Зарядное устройство для ДА-18ЭР Интерс

Зарядное устройство для ДА-18ЭР Интерс

Быстрозарядное устройство для Li-Ion АКБ

Быстрозарядное устройство для Li-Ion АКБ «М2», 12-18 В

Аккумуляторный блок Pitatel TSB-033-MAK18A-33M 18 В 3.3 А·ч

Аккумуляторный блок Pitatel TSB-033-MAK18A-33M 18 В 3.3 А·ч

Зарядное устройство РЕСАНТА АП18Л1 18 В

Зарядное устройство РЕСАНТА АП18Л1 18 В

Зарядное устройство для Интерскол NiCd ДА-12ЭР, ДА-14ЭР, ДА-18ЭР универсальное (2401.012)

Зарядное устройство для Интерскол NiCd ДА-12ЭР, ДА-14ЭР, ДА-18ЭР универсальное (2401.012)

Аккумуляторный блок Pitatel TSB-009-BOS18A-30M 18 В 3 А·ч

Аккумуляторный блок Pitatel TSB-009-BOS18A-30M 18 В 3 А·ч

Зарядное устройство универсальное для ИНТЕРСКОЛ 12В - 18В 014-0091

Зарядное устройство универсальное для ИНТЕРСКОЛ 12В — 18В 014-0091

Зарядное устройство для дрели-шуруповерта MAKITA DC18RC (7.2-18V NiMh и Li-ion)

Зарядное устройство для дрели-шуруповерта MAKITA DC18RC (7.2-18V NiMh и Li-ion)

Блок питания для шуруповертов DeWALT 18V, 0.5A

Блок питания для шуруповертов DeWALT 18V, 0.5A

Аккумуляторный блок Pitatel TSB-229-AE(G)18-30M 18 В 3 А·ч

Аккумуляторный блок Pitatel TSB-229-AE(G)18-30M 18 В 3 А·ч

Зарядное устройство Интерскол Li-ion ЗУ-1,5/18, 18 В, 1,5 А

Зарядное устройство Интерскол Li-ion ЗУ-1,5/18, 18 В, 1,5 А

Аккумуляторный блок BLACK+DECKER BL4018-XJ 18 В 4 А·ч

Зарядное устройство (стакан) для аккумуляторных дрелей Вихрь, 18 В (ДА-18), 71/8/41

Зарядное устройство (стакан) для аккумуляторных дрелей Вихрь, 18 В (ДА-18), 71/8/41

Источник

Зарядное Устройство для любого шуруповерта и не только

В этой статье рассмотрим проект универсального источника питания, который может быть использован в качестве зарядного устройства для портативных электроинструментов и не только.

Особенность такого источника заключается в том, что он относительно простой и самое важное имеется стабилизация, как выходного напряжения, так и тока, то есть с его помощью можно заряжать и литий-ионные аккумуляторы.

Проектируя его я ставил задачу сделать универсальное, зарядное устройство для шуруповерта, поэтому диапазон выходного напряжения где-то от 11 до 17 вольт с возможностью регулировки, а ток до 1,3 ампер, также с возможностью регулировки. Этого вполне достаточно для зарядки наиболее ходовых электроинструментов 12, 14,4 и 16,8 вольта, но как уже сказал схема универсальна, выходное напряжение и ток можно сделать иными.

Устройство питается непосредственно от сети, снабжены всеми необходимыми защитами, включая защиту от коротких замыканий и перегрева.

Схема состоит из двух основных частей, сетевого понижающего импульсного блока питания и узла стабилизации тока и напряжения, за счет импульсного принципа преобразования устройство имеет высокий кпд, малые размеры и вес.

Источник питания построен на основе специализированной микросхемы TNY267 или 268, именно от выбора микросхемы зависит мощность зарядного устройства — это целая линейка специализированных микросхем, которые находят широкое применение во всевозможных зарядных устройствах и адаптеров питания.

Самая мощная из этой линейки TNY268 на основе которой можно построить блоки с мощностью до 23 ватт, фактически схема сетевого преобразователя может быть любой, хоть на сотни ватт, если в этом есть необходимость, важно чтобы преобразователь имел линию обратной связи.

Как мы знаем, для того чтобы обеспечить полноценную стабилизацию тока и напряжения, шим контроллер, на основе которого построен преобразователь, должен иметь два усилителя ошибки, например TL494. Особенностью нашей схемы является то, что стабилизация тока и напряжение реализованы через один единственный канал обратной связи, но вернемся к нашей микросхеме TNY268 — она выбрана неспроста, во-первых блоки питания на основе данных микросхем имеют минимальную обвязку и самое главное импульсный трансформатор имеет всего две обмотки, сетевая и вторичная.

Дополнительной обмотки мотать в данном случае не нужно, к тому же в самой микросхеме уже есть всё необходимое для работы, включая полноценный шим контроллер, система защиты и даже силовой транзистор это удобно и дешево.

Я сделал несколько источников питания используя микросхемы, как TNY267 так и 268, работают аналогично хорошо.

Вторая часть зарядки состоит из сдвоенного операционного усилителя lm358, источника опорного напряжения tl431 и мелочевки, имеется пара подстроечных резисторов для регулировки тока и напряжения.

Этот узел наиболее важен, поскольку им можно дополнить любой другой блок питания любой мощности и получить регулируемое по току и напряжению зарядное устройство.

Давайте подробно рассмотрим, как работает этот узел… Первый канал операционного усилителя задействован для стабилизации тока, второй для напряжения, в схеме стабилизации тока имеется токовый шунт, в нашем случае представляющий собой низкоомный, 2-ватный резистор R6.

Опорное напряжение 2,5 вольта задается микросхемой tl431, тут она работает чисто как стабилитрон. Резистор R15 задаёт ток стабилизации, в зависимости от запланированного выходного напряжения необходим пересчёт данного резистора таким образом, чтобы ток стабилизации был в районе 5-10 максимум 20 миллиампер — плюс минус.

Опорное напряжение, через резистивный делитель, подается на инверсный вход операционного усилителя, притом важно заметить что один из резисторов делителя — подстрочный, вращая его мы можем изменять опорное напряжение на инверсном входе операционника.

На прямой вход, того же канала операционного усилителя поступает падение напряжения с датчика тока, при подключении нагрузки на выход источника по шунту будет протекать определенный ток, что приведет к образованию падения напряжения на нём — это напряжение поступит на прямой вход операционного усилителя, где оно будет сравнено с опорным напряжением на другом входе, если падение напряжения на шунте большие опорного напряжения, на выходе операционного усилителя получим высокий уровень — засветятся соответствующий светодиод и одновременно светодиод оптопары, которая задействована тут в цепи обратной связи.

Читайте также:  TP4056 схема подключения модуля зарядки

Источник

Универсальное зарядное устройство для всех типов аккумуляторов шуруповертов 18 вольт

Аккумуляторный шуруповерт является альтернативой обычной отвёртке при выполнении как небольших задач, так и крупных ремонтных проектов в доме. Инструмент доступен по цене, им легко пользоваться, а особым преимуществом является отсутствие провода, обычного для электроинструментов. Для периодической подзарядки аккумуляторов используется зарядное устройство для шуруповерта.

Преимущества аккумуляторных инструментов

Устройство для зарядки шуруповерта

Сегодня существует множество приспособлений, которые успешно справляются с монтажными работами, использующих крепёж: отвёртки, дрели, сверлильные станки, многие из них имеют зарядное устройство для шуруповерта.

Маленькие, лёгкие, мобильные и автономные шуруповёрты обладают преимуществами:

Устройство беспроводных источников питания

Как отремонтировать зарядное устройство

Зарядники аккумуляторных батарей преобразуют переменный ток 220 В от сети в постоянный ток. Для выполнения своих функций зарядное устройство имеет трансформатор и специальную печатную плату. Батареи производят ток благодаря химической реакции между двумя электродами и электролитом. Напряжение находится в диапазоне от 1,2 до 24 В или более, в зависимости от типа аккумулятора и силы тока.

Многие беспроводные устройства питаются от перезаряжаемой никель — кадмиевой (nicad) батареи или аккумуляторной батареи, состоящей из 20 ячеек. Каждая ячейка обеспечивает постоянный ток около 1,2 В. Пакеты встраиваются непосредственно в инструмент и имеют защёлкивающиеся зажимы.

Ряд аккумуляторов имеют постоянные встроенные батареи, которые невозможно удалить и они заряжаются в блоке.

Восстановление работоспособности дрели

Работая с повышенными нагрузками и в загрязнённой ремонтной среде, шуруповерт может сломаться. Самые частые причинами неисправностей — это грязь или пыль. Иногда отвёртка перестаёт работать, когда медные соединения на контактах окисляются. Отремонтировать и одновременно сделать настройку шуруповёрта своими руками можно после изучения инструкции завода-изготовителя в такой последовательности:

Устранение неисправности адаптера

Очень часто случается так, что пользователь заряжает аккумулятор, а он перестаёт работать практически сразу, индикатор сообщает о разрядке батарей. В этом случае необходима диагностика, чтобы определит точно, что неисправно — аккумулятор или зарядное устройство.

Если беспроводной механизм (со встроенной перезаряжаемой батареей) не работает, не хватает мощности, нужно убедиться что:

  1. Питание включено на выходе и розетка не подключена к сети.
  2. Проверить электрический шнур и заменить его, если он неисправен.
  3. Опробовать блок питания и выполнить ремонт.
  4. Если беспроводное устройство или перезаряжаемые батареи работают в течение более коротких периодов между подзарядами, вероятно, они изношены. Нужно осмотреть их на наличие повреждений или утечек и при необходимости заменить.

Самостоятельная зарядка литий-ионных батарей

Ремонт зарядного устройства

Иногда для старых моделей инструмента невозможно приобрести новый зарядник и необходима доработка или сделать новый самостоятельно. Для свинцово-кислотных батарей Ni-Cd и Li-ion потребуется схема зарядного устройства для шуруповёрта 18 вольт. Основными особенностями этого универсального источника являются:

  1. Напряжение постоянного тока.
  2. Автоматическое отключение при полной зарядке.
  3. Максимальный ток 5 ампер, аккумуляторы могут заряжаться в обычном режиме.
  4. Полностью настраиваемый режим согласно спецификациям батареи.
  5. Низкая себестоимость.
  6. Оптимальная электросхема. Никаких специальных деталей не требуется, все они стандартные и легко доступны.
  7. Светодиодные индикаторы для контроля состояния отсечки и зарядки.
  8. Подходит для гаражей и домашнего использования.

Схема работы зарядного устройства

Это многоцелевое приспособление представляет собой источник постоянного напряжения на 5 ампер, однако, для зарядки меньшего тока может потребоваться дополнительная цепь постоянного тока между входным источником питания.

При глубокой зарядке батарея может перегреваться, что должно быть защищено автоматической схемой контроллера температуры или охлаждением вентилятора. Список деталей для ремонта шуруповёрта своими руками:

  1. Резисторы.
  2. Конденсаторы.
  3. Симистры.
  4. Стабилитроны.
  5. Редуктор.

Ремонт источников тока

У аккумуляторных батарей в действительности нет сложных запасных частей, так как она собирается из простейших зарядных элементов. Для того чтобы определиться с ремонтом нужно открыть источник и проверить наличие повреждений. Инструменты и материалы, которые понадобятся при выполнении ремонта:

  • Мультиметр.
  • Отвёртка.
  • Очиститель электрических контактов.
  • Изолента.

Бывают случаи, когда катушка беспроводной отвёртки имеет дефект и, следовательно, перегревает устройство. Изоляция легко плавится, аккумуляторы выходят из строя и беспроводная отвёртка не может использоваться. Техническую ошибку не всегда можно определить внешним осмотром и нужна разборка инструмента.

Диагностика состояния электроинструмента

Горячие поверхности беспроводной отвёртки и батареи свидетельствуют о перегреве инструмента. Перегрев — это процесс, который может произойти в двух случаях. С одной стороны, шуруповёрт имеет внутренний дефект, а с другой стороны, возможно, что он используется неправильно. Для этого перед ремонтом нужно провести проверку:

Шуруповерты производит большое количество фирм, особенно популярны инструменты фирм Интерскол, Bosch, Макита. Обычно они чрезвычайно прочны и надёжны, тем не менее отдельные части могут изнашиваться. Например, когда при нажиме на курок дрель не работает. Такая поломка говорит о том, что не действует триггер (кнопка). Замена триггера — довольно простая операция. Перед началом ремонта аккумулятор должен быть удалён, чтобы предупредить получение травмы при включении спускового механизма двигателя. Порядок проведения замены регулятора на примере зарядного устройства для шуруповерта Бош:

Другой вид ремонта шуруповёрту Бош, например, или от другого известного производителя требуется намного реже и его лучше доверить сервисному центру.

Аккумуляторные шуруповёрты в наши дни достаточно надёжны, поэтому на самом деле трудно найти случаи поломок модели с напряжением 18 В. Литий-ионные аккумуляторы имеют отличное время автономной работы и низкие скорости саморазряда, благодаря чему инструменты, оснащеные ими, постоянно находят применение в домашнем хозяйстве.

Источник

Изготовление устройства зарядного для шуруповёрта своими руками

При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства (ЗУ). В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую — с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом.

Виды зарядных устройств

Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемента. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.

Достоинство применения аккумуляторов в возможности их неоднократного использования. Аккумуляторы, отдавая накопленную энергию устройству, периодически сами нуждаются в подзарядке. Для восстановления величины их ёмкости и служат зарядные устройства.

Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:

  • никель-кадмиевые (NiCd);
  • никель-металл-гидридные (NiMH);
  • литий-ионные (LiIon).
Читайте также:  Зарядное устройство Xiaomi Mi Charger 33W

Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:

  • индикацию;
  • быструю зарядку;
  • разный тип защиты.

Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.

Типы применяемых батарей

Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время практически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.

Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.

Литий-ионные характеризуются высокой ёмкостью и низким значением саморазряда. Эти аккумуляторы плохо переносят перегрев и глубокий разряд. В первом случае они способны взорваться, а во втором уже не смогут восстановить свою ёмкость. Они также способны работать при отрицательных температурах и не имеют эффекта памяти. Использование ЗУ с микроконтроллером позволило защитить батарею от перезаряда, тем самым сделав этот тип наиболее привлекателен к применению. По цене они дороже, чем первые два типа.

Кроме этого, основной характеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель — тем дольше работает шуруповёрт. Единица измерения ёмкости — миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH — 1,2 вольта.

Принцип работы ЗУ

При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.

Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Интерскол:

Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.

При включении ЗУ переменное напряжение сети 220 вольт через предохранитель поступает на понижающий трансформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через диодный мост, выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.

Когда кнопка «Пуск» SK1 нажата, на 16-й вывод контроллера U1 поступает стабилизированный сигнал через резистор R6. Ключ Q1 открывается и через него поступает ток на выводы реле. Контакты прибора S3-12A замыкаются и начинается процесс зарядки. Диод VD8, включённый параллельно транзистору, защищает его от скачка напряжения, вызванного отключением реле.

Источник

Конструкция зарядного устройства от шуруповёрта

Схема, устройство, ремонт

Зарядное устройство

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол».

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Схема зарядного устройства от шуруповёрта

Печатная плата зарядного устройства (CDQ-F06K1).

Печатная плата зарядного устройства

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь.

Трансформатор GS-1415 от зарядного устройства

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

Читайте также:  Использем трансформатор от старого телевизора

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки «Пуск» микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки «Пуск» напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012, которым она управляет.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки «Пуск» разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

Сменный аккумулятор 14,4V

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Никель-кадмиевый элемент (Ni-Cd)

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Датчик температуры

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки «Пуск» электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому «эффекту памяти» у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован.

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

Зарядная характеристика Ni-Cd аккумуляторов

На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за «эффекта памяти». При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 «Пуск» начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

Зарядное устройство шуруповёрта Интерскол в разобранном виде

В моей практике был случай, когда стабилитрон пробило, мультиметром он «звонился» как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на «пробой» можно также, как и обычный диод. О проверке диодов я уже рассказывал.

Меняем пробитый стабилитрон

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор «Сеть» (зелёный). Вынимаем АКБ и делаем «контрольный» замер напряжения на её клеммах. АКБ должна быть заряженной.

Проверка зарядного устройства после ремонта

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у начинающих радиолюбителей.

Источник

Adblock
detector