Меню

Стабилизированный блок питания устройство



Стабильная работа в любых условиях: источники питания SITOP Power

30 сентября 2014

SITOP Power – обширная линейка стабилизированных источников питания от Siemens, предназначенная для работы в самых разных областях промышленности – в химической, машиностроительной, робототехнической и других. Данные источники питания подойдут практически для любых задач благодаря мощному функционалу, широкому диапазону рабочих температур, работе с нестандартными напряжениями и многим другим преимуществам.

Ни для кого не секрет, что оборудование компании Siemens широко применяется на промышленных предприятиях России и ближнего зарубежья и по количеству установок занимает первое место. И это естественно, ведь промышленное оборудование производства Siemens отличается высочайшим качеством, и это доказано временем. Если «мозгом» любой автоматизированной системы управления технологическим процессом (АСУ ТП) является программируемый логический контроллер (ПЛК), то «сердцем» будет источник питания.

Чтобы правильно подобрать источники питания, необходимо понимать принципы работы блоков питания.

Как устроен стабилизированный блок питания

Стабилизированный источник питания – это источник питания, который содержит аналоговую, импульсную или цифровую схему регулирования, благодаря которой поддерживаются постоянные выходные параметры – ток и напряжение при скачках входного напряжения. Также схема обеспечивает защиту от короткого замыкания и перегрузок.

В нестабилизированном источнике питания такая схема отсутствует. Он состоит из входного и выходного фильтров, входного и выходного выпрямителей, генератора импульсов и трансформатора, защищающего нагрузку только от перенапряжений (рисунок 1). Как видно из этого рисунка, выходное напряжение получается неустойчивым. Его параметры очень сильно зависят от качества питающей электросети. Но при этом КПД выше, чем у стабилизированного источника питания, а нагрев ниже, так как нет контура регулирования, который требует дополнительной энергии.

Серия SITOP Power относится к стабилизированным импульсным блокам питания (рисунок 2).

Рис. 1. Структурная схема простейшего блока питания

Рис. 1. Структурная схема простейшего блока питания

Рис. 2. Структурная схема стабилизированного блока питания

Рис. 2. Структурная схема стабилизированного блока питания

В таких блоках входное переменное или постоянное напряжение (Uвх) выпрямляется и преобразуется в импульсы высокой частоты. Эти импульсы подаются на первичную обмотку трансформатора. Соответственно, на вторичной обмотке появляются импульсы такой же частоты, но другого напряжения. Это напряжение снова выпрямляется и подается на блок стабилизации, и уже потом – на выход блока питания. Автоматическое регулирование заключается в коррекции номинального (Uвых.ном) и реального (Uвых) выходных напряжений.

Диапазон входных напряжений. Чем больше данный диапазон – тем надежней работа блока питания, например, при повышенном или пониженном напряжении. Линейка SITOP Power имеет очень широкий диапазон – 85…264 В постоянного тока и 400…500 В переменного тока. При этом, номинальное напряжение у однофазных блоков питания выбирается с помощью перемычки – 120 или 220 В.

Допустимое перенапряжение – кратковременный всплеск напряжения, при котором выходной ток (Iвых) все еще равен номинальному току (Iвых.ном). У семейства SITOP Power эта величина равна Uвх*2,3 в течение 1,3 мс.

Допустимый перерыв в питании – исчезновение входного тока (Iвх) до 3 мс, при которой Iвых = Iвых.ном.

Предельный импульсный ток включения. В момент включения блока питания происходит зарядка емкостей входного фильтра. Величина входного тока при этом может превышать номинальный в 3…4 раза. Если ток при запуске установки превышает значение импульсного тока включения, рассчитанный для конкретной модели – необходимо применять ограничитель пускового тока. Его отсутствие в таких случаях может привести к периодическому срабатыванию автоматического выключателя из-за больших пусковых токов.

Ограничитель пускового тока. Он необходим для уменьшения импульсных токов включения емкостей во входных цепях до безопасного уровня. Ограничитель устанавливается в разрыв цепи после автомата и перед одним или несколькими блоками питания и ограничивает их пусковые токи.

Корректор коэффициента мощности (PFC) или компенсатор реактивной мощности предназначен для снижения реактивной мощности, потребляемой блоком питания. Классическая схема выпрямления переменного тока состоит из диодного моста и конденсатора. Проблема в том, что ток заряда конденсатора представляет собой импульс и имеет очень большое значение. Например, сетевой ток импульсного источника питания при 300 Вт и 220 В будет примерно 1 А, импульсный – 4 А. А если источников будет несколько и большей мощности – скорее всего, начнутся проблемы с проводкой, розетками, поступят огромные счета за электричество. Для решения данной проблемы применяют специальный электрический модуль – корректор коэффициента мощности, который уменьшает импульсы. Он располагается между конденсатором и выпрямителем и обрезает амплитуду тока.

Коэффициент мощности – отношение активной мощности (потребляемой источником питания безвозвратно и уходящей в тепло) к полной. То есть, коэффициент мощности – отношение полезной к полученной мощности. Чем он ближе к единице – тем лучше.

Выходной номинальный ток. Величина номинального выходного тока является важнейшей характеристикой при подборе источника питания. Следует очень внимательно подсчитать потребляемый ток всех элементов, запитываемых от этого блока. Также необходимо обратить внимание на температуру, при которой будет работать блок питания. Линейка SITOP Power выдает номинальные параметры при температурах -25…70°С, в отличие от остальных производителей, когда ухудшение характеристик начинается уже с 40°С.

КПД. Величина КПД влияет на тепловыделение. Чем выше КПД – тем лучше, так как блок питания выделяет меньше тепла.

Диапазон настройки уровня выходного напряжения. Большинство моделей блоков питания SITOP Power позволяет регулировать величину номинального выходного напряжения. Это позволяет обеспечить электричеством оборудование с нестандартным питанием или компенсировать падение напряжения в распределенных линиях.

Возможность параллельного включения. Параллельное включение блоков питания дает возможность использования «горячего» резервирования или сложения мощностей. Серия SITOP Power поддерживает до двух параллельно включенных источников питания.

Диапазон рабочих температур. При выборе модели блока питания необходимо учитывать, при какой температуре он будет эксплуатироваться. Одно дело, если они находятся в обогреваемых помещениях, другое – если в шкафах наружной установки. Большая часть серии SITOP Power обеспечивает нормальную работу при температурах -20…70°С. Соответственно, если температура выходит за эти рамки – в шкаф необходимо будет поставить или охлаждающий вентилятор, или нагреватель.

Индикация и сигнализация. В основном, используются транзисторные нормально открытые выходы для дистанционного наблюдения за работой блока питания и светодиоды состояния, расположенные непосредственно на приборе.

Основные преимущества

Блоки питания семейства SITOP Power отличают следующие особенности:

  • высокая степень точности выходного напряжения при скачках входного напряжения обеспечивает непрерывное и стабильное выходное напряжение, сглаживая возмущения входной цепи;
  • низкий уровень пульсаций выходного напряжения (

Источник

Стабилизированные источники питания

Стабилизированный источник питания на 12 вольт . Принципиальная электрическая схема источника питания приведена на Рис.1 . На входе схемы переменное напряжение сети, пониженное трансформатором до 18 вольт, выпрямляется однофазным мостовым выпрямителем в постоянное напряжение, пульсации которого сглаживаются П-образным С1R1C2 фильтром. Благодаря большой ёмкости этих конденсаторов постоянное напряжение на конденсаторе С2, то есть на входе стабилизатора напряжения, достигает 15 – 20 В.

Принцип действия стабилизатора напряжения основан на включении в выходную цепь выпрямителя последовательно с нагрузкой регулирующего составного транзистора VT1-VT2, сопротивление которого изменяется в зависимости от изменения величины напряжения рассогласования между базой и эмиттером транзистора VT3, который работает как однокаскадный УПТ с отрицательной обратной связью. Так как эмиттер транзистора VT3 соединён с выходной цепью стабилизатора через стабилитрон VD1, то все колебания выходного напряжения будут почти полностью передаваться на резистор R4, то есть на эмиттер транзистора VT3, но в тоже время лишь частично на резистор R7 и нижнюю часть переменного резистора R6 делителя напряжения R5, R6, R7, то есть на базу этого же транзистора.

Следовательно, при любом изменении величины выходного напряжения, то есть напряжения на нагрузке, появившееся приращение напряжения рассогласования между базой и эмиттером транзистора VT3 вызовет соответствующее изменение базового и коллекторного токов. Если, например, выходное напряжение увеличится, то в результате действия отрицательной обратной связи напряжение база – эмиттер транзистора VT3 станет менее положительным, его коллекторный ток уменьшится, что вызовет уменьшение падения напряжения на резисторе R2, которое является напряжением смещения на базе составного транзистора V1 – V2. При этом уменьшится и его выходной ток, но увеличится внутреннее сопротивление и падение напряжения на нём, чем компенсируется увеличившееся выходное напряжение стабилизатора. Аналогично действует процесс стабилизации выходного напряжения и при некотором его уменьшении, вызванном или колебанием напряжения питающей сети, или изменением температурных условий.
Величина выходного напряжения устанавливается резистором R6. В случае короткого замыкания на выходе стабилизатора все транзисторы почти мгновенно запираются, надёжно защищая стабилизатор и выпрямитель от появления токовой перегрузки. Резистор R3, подключённый параллельно транзистору VT1, пропуская через себя часть выходного тока выпрямителя, обеспечивает включение схемы в режим стабилизации и одновременно уменьшает выходную мощность, рассеиваемую на коллекторе транзистора VT1, повышая его надёжность.
Стабилизированные источники питания на 15 В и на 27 В. ( на Рис.2, 3 ). Схема выпрямителя на 15 В. рассчитана на ток нагрузки до 0,5 А, а схема на 27 В – ток до 1 А.

Эти стабилизированные источники питания, в схемах стабилизаторов компенсационного типа которых используются микросхемы К140УД1А, обеспечивают большой коэффициент стабилизации. Схема на Рис.2 ( 15 В ) источника питания при изменении входного напряжения на ±10% имеет Кстаб. ≥ 4000, вторая схема ( Рис.2, 27 В. ) – Кстаб. ≥ 20000. Очень низкое выходное сопротивление стабилизаторов составляет около 0,001 Ом; КПД первой схемы стабилизатора составляет около 60%, а второй – около 70%. Коэффициенты подавления пульсаций напряжения с частотой 100 Гц у первой схемы более 5000, а у второй – более 50000, что даёт возможность ограничится только емкостным сглаживающим фильтром, исключив дроссель фильтра L, который показан на схеме.

Стабилитрон VD5 в первой схеме, и VD7-VD8во второй, соединённые последовательно с полевым транзистором VT3, включены параллельно выходу стабилизатора, что повышает стабильность опорного напряжения, подаваемого на инвертирующий вход микросхемы операционного усилителя К140УД1А, работающего в качестве усилителя постоянного тока ( УПТ ), с отрицательной обратной связью. Полевой транзистор VT3 с n-каналом, включённый при короткозамкнутых выводах затвора и истока, имея большое дифференциальное сопротивление, обеспечивает необходимую величину тока ( около 10 мА ), протекающего через стабилитроны VD5 и VD7 + VD8.

Напряжение, снимаемое с резисторов R5 и R6 ( Рис.2 ) и с резисторов R6 и R7 ( Рис.3 ), подаётся на неинвертирующий вход микросхемы ОУ. Поэтому благодаря малому дифференциальному сопротивлению стабилитронов VD5 и VD7 + VD8 и очень большому дифференциальному сопротивлению полевого транзистора VT3, включённому в цепь отрицательной обратной связи, увеличение или уменьшение выходного напряжения от номинального значения вызывает соответствующее приращение напряжение на неинвертирующем входе ОУ, которое всегда превышает приращение напряжение на инвертирующем входе ОУ. Вследствие этого напряжение на выходе ОУ ( вывод 5 ) при увеличении выходного напряжения стабилизатора уменьшается, и наоборот.

Выходное напряжение операционного усилителя, подаваемое через резистор R2 на базу транзистора VT2, управляет величиной его коллекторного тока, протекающего через резистор R1.
В обеих схемах стабилизаторов напряжения включение в регулируемую цепь двух разноструктурных транзисторов VT1 и VT2 благодаря наличию отрицательной обратной связи между ними обеспечивает получения очень низкого выходного сопротивления регулирующего элемента. При этом выход ОУ ( вывод 5 ) соединён с нагрузкой через резистор R2 и один эмиттерный переход транзистора VT2, обладающий малым сопротивлением.
К выводу 12 микросхемы подключается корректирующая RC-цепочка, улучшающая устойчивость УПТ к самовозбуждению. При помощи резистора R6 можно регулировать величину выходного напряжения стабилизатора в пределах до ± 1 вольт.

В.С. Майоров, С. В. Майоров “УСИЛИТЕЛЬНЫЕ УСТрОЙСТВА НА ЛАМПАХ, ТРАНЗИСТОРАХ И МИКРОСХЕМАХ”, Москва, “Искусство”, 1982, стр. 156-160.

Источник

Стабилизированные источники питания

Стабилизированный источник питания на 12 вольт . Принципиальная электрическая схема источника питания приведена на Рис.1 . На входе схемы переменное напряжение сети, пониженное трансформатором до 18 вольт, выпрямляется однофазным мостовым выпрямителем в постоянное напряжение, пульсации которого сглаживаются П-образным С1R1C2 фильтром. Благодаря большой ёмкости этих конденсаторов постоянное напряжение на конденсаторе С2, то есть на входе стабилизатора напряжения, достигает 15 – 20 В.

Принцип действия стабилизатора напряжения основан на включении в выходную цепь выпрямителя последовательно с нагрузкой регулирующего составного транзистора VT1-VT2, сопротивление которого изменяется в зависимости от изменения величины напряжения рассогласования между базой и эмиттером транзистора VT3, который работает как однокаскадный УПТ с отрицательной обратной связью. Так как эмиттер транзистора VT3 соединён с выходной цепью стабилизатора через стабилитрон VD1, то все колебания выходного напряжения будут почти полностью передаваться на резистор R4, то есть на эмиттер транзистора VT3, но в тоже время лишь частично на резистор R7 и нижнюю часть переменного резистора R6 делителя напряжения R5, R6, R7, то есть на базу этого же транзистора.

Следовательно, при любом изменении величины выходного напряжения, то есть напряжения на нагрузке, появившееся приращение напряжения рассогласования между базой и эмиттером транзистора VT3 вызовет соответствующее изменение базового и коллекторного токов. Если, например, выходное напряжение увеличится, то в результате действия отрицательной обратной связи напряжение база – эмиттер транзистора VT3 станет менее положительным, его коллекторный ток уменьшится, что вызовет уменьшение падения напряжения на резисторе R2, которое является напряжением смещения на базе составного транзистора V1 – V2. При этом уменьшится и его выходной ток, но увеличится внутреннее сопротивление и падение напряжения на нём, чем компенсируется увеличившееся выходное напряжение стабилизатора. Аналогично действует процесс стабилизации выходного напряжения и при некотором его уменьшении, вызванном или колебанием напряжения питающей сети, или изменением температурных условий.
Величина выходного напряжения устанавливается резистором R6. В случае короткого замыкания на выходе стабилизатора все транзисторы почти мгновенно запираются, надёжно защищая стабилизатор и выпрямитель от появления токовой перегрузки. Резистор R3, подключённый параллельно транзистору VT1, пропуская через себя часть выходного тока выпрямителя, обеспечивает включение схемы в режим стабилизации и одновременно уменьшает выходную мощность, рассеиваемую на коллекторе транзистора VT1, повышая его надёжность.
Стабилизированные источники питания на 15 В и на 27 В. ( на Рис.2, 3 ). Схема выпрямителя на 15 В. рассчитана на ток нагрузки до 0,5 А, а схема на 27 В – ток до 1 А.

Эти стабилизированные источники питания, в схемах стабилизаторов компенсационного типа которых используются микросхемы К140УД1А, обеспечивают большой коэффициент стабилизации. Схема на Рис.2 ( 15 В ) источника питания при изменении входного напряжения на ±10% имеет Кстаб. ≥ 4000, вторая схема ( Рис.2, 27 В. ) – Кстаб. ≥ 20000. Очень низкое выходное сопротивление стабилизаторов составляет около 0,001 Ом; КПД первой схемы стабилизатора составляет около 60%, а второй – около 70%. Коэффициенты подавления пульсаций напряжения с частотой 100 Гц у первой схемы более 5000, а у второй – более 50000, что даёт возможность ограничится только емкостным сглаживающим фильтром, исключив дроссель фильтра L, который показан на схеме.

Стабилитрон VD5 в первой схеме, и VD7-VD8во второй, соединённые последовательно с полевым транзистором VT3, включены параллельно выходу стабилизатора, что повышает стабильность опорного напряжения, подаваемого на инвертирующий вход микросхемы операционного усилителя К140УД1А, работающего в качестве усилителя постоянного тока ( УПТ ), с отрицательной обратной связью. Полевой транзистор VT3 с n-каналом, включённый при короткозамкнутых выводах затвора и истока, имея большое дифференциальное сопротивление, обеспечивает необходимую величину тока ( около 10 мА ), протекающего через стабилитроны VD5 и VD7 + VD8.

Напряжение, снимаемое с резисторов R5 и R6 ( Рис.2 ) и с резисторов R6 и R7 ( Рис.3 ), подаётся на неинвертирующий вход микросхемы ОУ. Поэтому благодаря малому дифференциальному сопротивлению стабилитронов VD5 и VD7 + VD8 и очень большому дифференциальному сопротивлению полевого транзистора VT3, включённому в цепь отрицательной обратной связи, увеличение или уменьшение выходного напряжения от номинального значения вызывает соответствующее приращение напряжение на неинвертирующем входе ОУ, которое всегда превышает приращение напряжение на инвертирующем входе ОУ. Вследствие этого напряжение на выходе ОУ ( вывод 5 ) при увеличении выходного напряжения стабилизатора уменьшается, и наоборот.

Выходное напряжение операционного усилителя, подаваемое через резистор R2 на базу транзистора VT2, управляет величиной его коллекторного тока, протекающего через резистор R1.
В обеих схемах стабилизаторов напряжения включение в регулируемую цепь двух разноструктурных транзисторов VT1 и VT2 благодаря наличию отрицательной обратной связи между ними обеспечивает получения очень низкого выходного сопротивления регулирующего элемента. При этом выход ОУ ( вывод 5 ) соединён с нагрузкой через резистор R2 и один эмиттерный переход транзистора VT2, обладающий малым сопротивлением.
К выводу 12 микросхемы подключается корректирующая RC-цепочка, улучшающая устойчивость УПТ к самовозбуждению. При помощи резистора R6 можно регулировать величину выходного напряжения стабилизатора в пределах до ± 1 вольт.

В.С. Майоров, С. В. Майоров “УСИЛИТЕЛЬНЫЕ УСТрОЙСТВА НА ЛАМПАХ, ТРАНЗИСТОРАХ И МИКРОСХЕМАХ”, Москва, “Искусство”, 1982, стр. 156-160.

Источник

БЛОКИ ПИТАНИЯ И ИХ ПРИМЕНЕНИЕ

Виды и типы блоков питания

Для работы бытовой и промышленной техники, от компьютеров и холодильников до станков и автоматизированных узлов сборки, необходима электрическая энергия с подходящими параметрами: напряжением, частотой и силой тока.

Чтобы обеспечить нормальное функционирование — или хотя бы правильное отключение — приборов при выходе из строя сети, к которой они подключены, используются источники вторичного электропитания, или блоки питания. Как они устроены и каких видов бывают, будет рассказано ниже.

НАЗНАЧЕНИЕ УСТРОЙСТВ

Блок питания постоянного тока — это прибор, преобразующий исходные параметры электросети в требуемые для работы подключённых к ней технически сложных устройств. Чаще всего речь идёт о снижении и выпрямлении напряжения — именно оно имеет критическое значение для сохранности оборудования.

Второе назначение блоков питания — обеспечения работы устройств при временном отключении основной сети. Такое оборудование исполняет одновременно функции трансформатора и аккумулятора и при возобновлении электрического питания автоматически подзаряжается от сети.

Наконец, трансформаторные блоки питания могут использоваться и для соединения двух цепей в «опасных» точках — например, в местах с повышенной влажностью, наличием в воздухе проводящих или химически активных частиц и так далее.

Устройство в этом случае необязательно должно быть понижающим — часто коэффициент преобразования равен единице: и на входе, и на выходе вольтметр сохраняется среднее значение в 220 вольт.

Обычно один прибор выполняет сразу несколько функций: это и трансформатор, и аккумулятор, и изолированный «посредник»; чтобы дать пользователю возможность проверять и регулировать выходные параметры электричества, производителя снабжают устройства индикаторами напряжения, силы тока и (или) мощности, тумблерами и плавными переключателями.

Универсального сетевого блока питания не существует: такое устройство было бы крайне сложным в исполнении и ремонте, а кроме того, отличалось бы большой массой и высокой стоимостью.

РАЗНОВИДНОСТИ ПРИБОРОВ

Основные виды блоков питания:

  • линейные;
  • импульсные.

В состав устройств первого типа непременно входят трансформатор, конвертирующий исходное напряжение в более низкое, и выпрямитель, преобразующий переменный ток стандартной частоты (в России — около 50 герц) в постоянный, требуемый для работы бытовой или промышленной техники.

Дополнительными составляющими являются фильтр, предназначенный для нивелирования всплесков и провалов напряжения, стабилизатор, высокочастотный фильтр и защита от коротких замыканий.

Все эти компоненты позволяют получить на выходе идеально ровный сигнал, что особенно важно для чувствительных электроприборов: чем «чище» подаваемый на них ток, тем дольше они могут прослужить.

Плюсы линейных приборов:

  • простота устройства и ремонта;
  • повышенная надёжность;
  • минимальный, вплоть до нулевого, процент помех и колебаний в выходном сигнале;
  • доступность — трансформаторные устройства стоят сравнительно недорого.

Минусы линейных преобразователей:

  • габаритность — занимают как минимум в два раза больше места, чем импульсные;
  • массивность — характеристики используемых составляющих не позволяют сделать трансформаторные блоки лёгкими;
  • невысокий КПД — потери энергии в сети с подключённым устройством составляют не менее 15%.

В импульсных, или инверторных блоках питания происходят более сложные преобразования: сначала переменный ток преобразуется в постоянный, а затем формируются импульсы высокой частоты, подаваемые, через малогабаритный высокочастотный трансформатор, на выпрямитель и фильтр ВЧ, затем выход.

Основными элементами импульсных приборов являются:

  • малогабаритные первичные преобразователи переменного напряжения в постоянное;
  • стабилизаторы, работающие по принципу отрицательной обратной связи и гарантирующие «ровный» результирующий сигнал;
  • низкочастотные фильтры, обеспечивающие отсутствие помех на выходе.

К дополнительным компонентам относятся иные или дублирующие фильтры, защита от короткого замыкания и нулевой нагрузки, а также трансформаторы выходного переменного сигнала в постоянный.

Плюсы импульсных устройств:

  • небольшие габариты — такие устройства как минимум в два раза меньше линейных;
  • небольшая масса — весят инверторные блоки сравнительно немного;
  • высокий КПД — потери при включении оборудования в сеть лежат в диапазоне 2…10%.

Минусы импульсных приборов:

  • сложность устройства и ремонта;
  • большая, по сравнению с линейными блоками, стоимость;
  • высокочастотные помехи, отрицательно сказывающиеся на работе чувствительных приборов.

В настоящее время и линейное, и импульсное оборудование оснащено стабилизаторами, позволяющими получить на выходе ровный, без резких скачков, сигнал. Стабилизированный блок питания продлевает срок службы бытовой и промышленной техники, а также, даже без использования дополнительной защиты, снижает риск короткого замыкания в сети.

ХАРАКТЕРИСТИКИ ОБОРУДОВАНИЯ

К основным параметрам блоков питания, линейных или импульсных, относятся:

  • мощность;
  • выходное напряжение;
  • сила тока на выходе;
  • коэффициент полезного действия;
  • наличие дополнительных опций;
  • габариты и масса;
  • стоимость.

Мощность измеряется в ваттах или, по сохранившейся традиции, в вольт-амперах. Максимальное значение, которое может выдать устройство на выходе, обязательно указывается в его характеристиках; в идеале оно должно на 15–30% превышать суммарную потребляемую мощность всех подключённых к сети через блок питания приборов.

Например, если для работы первого изделия требуется 15 Вт, второго — 6 Вт, а третьего — 9 Вт, мощность стабилизированного блока питания должна составлять: (15 + 6 + 9)×(1,15…1,30), то есть от 34,5 до 39 ватт. Устройства, выдающие большие значения, использовать можно; меньшие — нет.

У холодильников, насосов и ряда других устройств она может превышать постоянную более чем в пять раз, что необходимо закладывать в расчёты.

Если для запуска первого из перечисленных в примере выше приборов требуется мощность, в три раза превышающая потребляемую в ходе функционирования, расчёты будут выглядеть следующим образом: (15×3 + 6 + 9)×(1,15…1,30), то есть требуемая мощность оборудования должна составлять от 69 до 78 ватт.

Устройство, выдающее только номинальные 60 Вт, может оказаться недостаточно эффективным — или владельцу придётся на время пуска отключать другие два электроприбора.

Выходное напряжение.

Поскольку значение напряжения на входе не зависит от воли пользователя и в бытовой сети составляет приблизительно 220 В, с существенными колебаниями в меньшую или большую сторону, значение имеет лишь выходной параметр. Он может быть единственным (например, 12 В) или переключаемым — от 6 до 20 вольт или в любом другом предусмотренном производителем диапазоне.

В отличие от мощности, подбирать выходное напряжение нужно по ближайшему значению, не обязательно в большую сторону. Если для функционирования техники нужно 12,3 В, а в наличии имеются устройства с показателями 12 и 16 вольт, отдать предпочтение следует первому.

Хотя не все приборы требуют стабилизации напряжения, выбирать нужно устройства с этой функцией; они универсальны и подходят для любой техники, в то время как использование блока без стабилизатора может привести к выходу дорогостоящего оборудования из строя.

Выходная сила тока.

Этот параметр прямо связан с мощностью и напряжением, а потому зачастую не указывается. При подборе оборудования по силе тока нужно, как и в случае с мощностью, просуммировать потребляемые подключённой аппаратурой значения и прибавить к результату 15–30%

Например, если для работы первого прибора требуется 2 А, второго — 0,5 А, а третьего — 6 А, блок питания должен выдавать как минимум: (2 + 0,5 + 6)×(1,15…1,30), то есть от 9,8 до 11,1 ампера. По аналогии с ранее приведёнными расчётами нужно учитывать и пусковые значения, часто превышающие рабочие.

С целью упростить подбор оборудования можно руководствоваться эмпирическим правилом: если требуемое значение силы тока менее 5 А, нужно выбирать трансформаторный блок; если более — импульсный.

Коэффициент полезного действия.

Тут всё просто: чем выше КПД, тем эффективнее прибор и тем меньше потери электроэнергии в сети. Высокая стоимость блоков питания с КПД 95…98% со временем окупится экономией на потребляемом токе — а значит, приобретение устройства с максимальным параметром имеет смысл.

Дополнительная защита.

Наличие в устройстве блока защиты от перегрузок, полной разрядки, короткого замыкания, перегревания в ходе работы, резких скачков напряжения и повышения силы тока увеличивает стоимость изделия, зато даёт владельцу почти стопроцентную гарантию безопасности.

При выборе устройства следует обращать внимание на наличие регуляторов выходных параметров (плавных или ступенчатых), индикаторов, показывающих входных и выходные параметры тока (шкальных или цифровых), а также работу от сети или в автономном режиме (светодиодных), и возможности ручного разрыва сигнала (обычно реализуется в виде тумблера).

Чем больше информации сможет владелец получить о состоянии блока питания, тем безопаснее будет его работа и тем меньше риск преждевременного выхода из строя, «вылета» сети или короткого замыкания с последующим возгоранием.

Габариты и масса.

Здесь, как и в случае с КПД, всё прозрачно: чем компактнее и легче блок питания, тем он удобнее в эксплуатации — но, как правило, тем больше за него придётся заплатить.

Указанные параметры не являются краеугольными: если условиями работы являются большая мощность и высокий КПД, устройство просто не может быть слишком маленьким, тем более если подразумевается наличие в нём дополнительных функций.

Наиболее дорогими и качественными в отношении выходного сигнала являются промышленные блоки питания; но если пользователю необходимо обеспечить работу компьютера, телевизора и видеопроигрывателя, никакой необходимости в излишних тратах нет. Достаточно найти подходящий по перечисленным выше параметрам прибор — и, сравнив цены, выбрать идеальную модель.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Источник

Читайте также:  Блок питания HIPRO HIPO DIGI HPP 600W 600Вт 120мм серый HPP600
Adblock
detector