Меню

Стабилитроны в стабилизаторах напряжения



Выбор стабилитрона

Чтобы подобрать стабилитрон для схемы, показанной на рис. 3, нужно знать диапазон входных напряжений U1 и диапазон изменения нагрузки RН.

Схема включения стабилитрона

Рис. 3. Схема включения стабилитрона.

Для примера рассчитаем сопротивление R и подберём стабилитрон для схемы на рис. 3 со следующими требованиями:

Параметр Значение
Наименование Обозначение
Диапазон входных напряжений, В U1 11…15
Выходное напряжение, В U2 9
Диапазон нагрузок, мА IН 50…100

Такая схема может потребоваться, например, для питания какого-либо устройства с небольшим потреблением от бортовой сети автомобиля.

Один из посетителей сайта нашёл в этой статье ошибку, за что я ему благодарен. Сейчас эта статья исправлена и содержит правильные расчёты.

Итак, для начала рассчитаем значение сопротивления R. Минимальное напряжение на входе равно 11 В. При таком напряжении мы должны обеспечить ток на нагрузке не менее 100 мА (или 0,1 А). Закон Ома позволяет определить сопротивление резистора: То есть цепь для обеспечения заданного тока на нагрузке должна иметь сопротивление не более 110 Ом.

На стабилитроне падает напряжение 9 В (в нашем случае). Тогда при токе 0,1 А эквивалент нагрузки: Тогда, для того чтобы обеспечить на нагрузке ток 0,1 А, гасящий резистор должен иметь сопротивление: С учётом того, что сам стабилитрон тоже потребляет ток, можно выбрать несколько меньшее сопротивление из стандартного ряда Е24 статью о резисторах). Но, так как стабилитрон потребляет небольшой ток, этим значением в большинстве случаев можно пренебречь.

Теперь определим максимальный ток через стабилитрон при максимальном входном напряжении и отключенной нагрузке. Расчёт нужно выполнять именно при отключенной нагрузке, так как даже если у вас нагрузка будет всегда подключена, нельзя исключить вероятность того, что какой-нибудь проводок отпаяется и нагрузка отключится.

Итак, вычислим падение напряжения на резисторе R при максимальном входном напряжении: А теперь определим ток через резистор R из того же закона Ома: Так как резистор R и стабилитрон VD включены последовательно, то максимальный ток через резистор будет равен максимальному току через стабилитрон (при отключенной нагрузке), то есть Нужно ещё рассчитать мощность рассеивания резистора R. Но здесь это мы делать не будем, поскольку данная тема подробно описана в статье Резисторы.

А вот мощность рассеяния стабилитрона рассчитаем: Мощность рассеяния – очень важный параметр, который часто забывают учесть. Если окажется, что мощность рассеяния на стабилитроне превысит максимально допустимую, то это приведёт к перегреву стабилитрона и выходу его из строя. Хотя при этом ток может быть в пределах нормы. Поэтому мощность рассеяния как для гасящего резистора R, так и для стабилитрона VD нужно всегда рассчитывать.

Осталось подобрать стабилитрон по полученным параметрам:

UСТ = 9 В – номинальное напряжение стабилизации
IСТ.МАКС = 300 мА – максимально допустимый ток через стабилитрон
РМАКС = 2700 мВт – мощность рассеяния стабилитрона при IСТ.МАКС

По этим параметрам в справочнике находим подходящий стабилитрон. Для наших целей подойдёт, например, стабилитрон Д815В.

Надо сказать, что этот расчет довольно грубый, так как он не учитывает некоторые параметры, такие, например, как температурные погрешности. Однако в большинстве практических случаев описанный здесь способ подбора стабилитрона вполне подходит.

Стабилитроны серии Д815 имеют разброс напряжений стабилизации. Например, диапазон напряжений Д815В – 7,4…9,1 В. Поэтому, если нужно получить точное напряжение на нагрузке (например, ровно 9 В), то придётся опытным путём подобрать стабилитрон из партии нескольких однотипных. Если нет желания возиться с подбором «методом тыка», то можно выбрать стабилитроны другой серии, например серии КС190. Правда, для нашего случая они не подойдут, поскольку имеют мощность рассеивания не более 150 мВт. Для повышения выходной мощности стабилизатора напряжения можно использовать транзистор. Но об этом как-нибудь в другой раз…

И ещё. В нашем случае получилась довольная большая мощность рассеивания стабилитрона. И хотя по характеристикам для Д815В максимальная мощность 8000 мВт, рекомендуется устанавливать стабилитрон на радиатор, особенно если он работает в сложных условиях (высокая температура окружающей среды, плохая вентиляция и т.п.).

Если необходимо, то ниже вы можете выполнить описанные выше рассчёты для вашего случая

Источник

Выбор стабилитрона для блока питания

К вспомогательным, но нужным устройствам относятся выключатель SA1, предохранитель FU1 и индикатор включения — миниатюрная лампа накаливания HL1, с номинальным напряжением, несколько большим напряжения вторичной обмотки трансформатора (лампы, горящие с недокалом, гораздо дольше служат).

Стабилизатор напряжения, если он имеется, включается между выходом выпрямителя и нагрузкой. Напряжение на его выходе, как правило, меньше Uвых, и на стабилизаторе тратится заметная мощность.

Начнем с расчета сетевого трансформатора. Его габариты и масса полностью определяются той мощностью, которую должен отдавать блок питания: Рвых = Uвых • Iвых. Если вторичных обмоток несколько, то надо просуммировать все мощности, потребляемые по каждой из обмоток. К посчитанной мощности следует добавить мощность индикаторной лампочки Ринд и мощность потерь на диодах выпрямителя

где Unp — прямое падение напряжения на одном диоде, для кремниевых диодов оно составляет 0,6. 1 В, в зависимости от тока. Unp можно определить по характеристикам диодов, приводимых в справочниках.

От сети трансформатор будет потреблять мощность, несколько большую рассчитанной, что связано с потерями в самом трансформаторе. Различают «потери в меди» — на нагрев обмоток при прохождении по ним тока — это обычные потери, вызванные активным сопротивлением обмоток, и «потери в железе», вызванные работой по перемагничиванию сердечника и вихревыми токами в его пластинах Отношение потребляемой из сети к отдаваемой мощности равно КПД трансформатора η. КПД маломощных трансформаторов невелик и составляет 60. 65 %, возрастая до 90 % и более лишь для трансформаторов мощностью несколько сотен ватт. Итак,

Теперь можно определить площадь сечения центрального стержня сердечника (проходящего сквозь катушку), пользуясь эмпирической формулой:

В обозначениях магнитопроводов уже заложены данные для определения сечения. Например, Ш25х40 означает ширину центральной части Ш-образной пластины 25 мм, а толщину набора пластин 40 мм. Учитывая неплотное прилегание пластин друг к другу и слой изоляции на пластинах, сечение такого сердечника можно оценить в 8. 9 см 2 , а мощность намотанного на нем трансформатора — в 65. 80 Вт.

Читайте также:  Этот блок питание подойдет

Площадь сечения центрального стержня магнитопровода трансформатора S определяет следующий важный параметр — число витков на вольт. Оно не должно быть слишком малым, иначе возрастает магнитная индукция в магнитопроводе, материал сердечника заходит в насыщение, при этом резко возрастает ток холостого хода первичной обмотки, а форма его становится не синусоидальной — возникают большие пики тока на вершинах положительной и отрицательной полуволн. Резко возрастают поле рассеяния и вибрация пластин. Другая крайность — излишнее число витков на вольт — приводит к перерасходу меди и повышению активного сопротивления обмоток. Приходится также уменьшать диаметр провода, чтобы обмотки уместились в окне магнитопровода. Подробнее эти вопросы рассмотрены в [1].

Число витков на вольт n у фабричных трансформаторов, намотанных на стандартном сердечнике из Ш-образных пластин, обычно рассчитывают , из соотношения n = (45. 50)/S, где S берется в см 2 . Определив n и умножив его на номинальное напряжение обмотки, получают ее число витков. Для вторичных обмоток напряжение следует брать на 10 % больше номинального, чтобы учесть падение напряжения на их активном сопротивлении.

Все напряжения на обмотках трансформатора (UI и UII на рис.) берутся в эффективных значениях. Амплитудное значение напряжений будет в 1,41 раза выше. Если вторичная обмотка нагружена на мостовой выпрямитель, то напряжение на выходе выпрямителя Uвых на холостом ходу получается практически равным амплитудному на вторичной обмотке. Под нагрузкой выпрямленное напряжение уменьшается и становится равным:

Здесь rтр — сопротивление трансформатора со стороны вторичной обмотки. С достаточной для практики точностью можно положить rтp = (0,03. 0,07)Uвых/Iвых, причем меньшие коэффициенты берутся для более мощных трансформаторов.

Определив числа витков, следует найти токи в обмотках. Ток вторичной обмотки III = Iинд + Pвых/UII. Активный ток первичной обмотки (обусловленный током нагрузки) I = Ртр/UI. Кроме того, в первичной обмотке течет еще и реактивный, «намагничивающий» ток, создающий магнитный поток в сердечнике, практически равный току холостого хода трансформатора. Его величина определяется индуктивностью L первичной обмотки: I = UI/2пfL.

На практике ток холостого хода определяют экспериментально — у правильно спроектированного трансформатора средней и большой мощности он составляет (0,1. 0,3)IIA. Реактивный ток зависит от числа витков на вольт, уменьшаясь с увеличением n. Для маломощных трансформаторов допускают llp = (0,5. 0,7)lIA. Активный и реактивный токи первичной обмотки складываются в квадратуре, поэтому полный ток первичной обмотки II 2 = IIA 2 + I 2 .

Определив токи обмоток, следует найти диаметр провода исходя из допустимой для трансформаторов плотности тока 2. 3 А/мм 2 . Расчет облегчает график, показанный на рис.[2].

Оценивают возможность размещения обмоток в окне следующим образом: измерив высоту окна (ширину катушки), определяют число витков одного слоя каждой обмотки и затем требуемое число слоев. Умножив число слоев на диаметр провода и прибавив толщину изолирующих прокладок, получают толщину обмотки. Толщина всех обмоток должна быть не более ширины окна. Более того, поскольку плотная намотка вручную невозможна, следует полученную толщину обмоток увеличить в 1,2. 1,4 раза.

В заключение приведем упрощенный расчет выпрямителя (рис.). Допустимый прямой средний ток диодов в мостовой схеме должен быть не менее 0,5Iвых, практически выбирают (для надежности) диоды с большим прямым током. Допустимое обратное напряжение не должно быть меньше 0,71UII + 0,5Uвых, но поскольку на холостом ходу Uвых достигает 1,41UII, обратное напряжение диодов целесообразно выбирать не меньше этой величины, т. е. амплитудного значения напряжения на вторичной обмотке. Полезно учесть еще и возможные колебания напряжения сети.

Амплитуду пульсаций выпрямленного напряжения в вольтах можно оценить по упрощенной формуле: Uпульс = 5Iвых/С. Выходной ток подставляется в амперах, емкость конденсатора С1 — в микрофарадах.

При токах нагрузки, составляющих несколько десятков миллиампер и менее, допустимо ограничиться простейшим устройством со стабилитроном (см. раздел 4 «Нелинейные цепи» в «Радио», 2002, № 12, с. 45, рис. 19).

При больших токах нагрузки рекомендуем применить несколько более сложный стабилизатор, схема которого показана на рис..

Как видим, здесь к простейшему стабилизатору на элементах R1, VD1 добавлен эмиттерный повторитель, собранный на транзисторе VT1. Если в простейшем стабилизаторе ток нагрузки не может быть больше тока стабилитрона, то здесь он может превосходить ток стабилитрона в h21Э раз, где h21Э — статический коэффициент передачи тока базы транзистора в схеме с общим эмиттером. Для его увеличения часто на месте VT1 используют составной транзистор. Выходное напряжение стабилизатора на 0,6 В меньше напряжения стабилизации VD1 (на 1,2 В для составного транзистора).

Расчет стабилизированного блока питания рекомендуется начинать именно со стабилизатора. Исходя из требуемых напряжения и тока нагрузки, выбирают транзистор VT1 и стабилитрон VD1. Ток базы транзистора составит:

Он и явится выходным током простейшего стабилизатора на элементах R1 и VD1. Затем оцените минимальное напряжение на выходе выпрямителя Uвых-Uпульс — оно должно быть на 2. 3 В больше требуемого напряжения на нагрузке даже при минимально допустимом напряжении сети. Далее расчет ведется описанным способом. Более совершенные схемы и расчет стабилизаторов даны в [3].

ЛИТЕРАТУРА
1. Поляков В. Уменьшение поля рассеяния трансформатора. — Радио, 1983, № 7, с. 28, 29.
2. Малинин Р. М. Питание радиоаппаратуры от электросети. — М.: Энергия, 1970.
3. Москвин А. Транзисторные стабилизаторы напряжения с защитой от перегрузки. — Радио, 2003, № 2, с. 26—28.
В. Поляков, г. Москва.
Радио 05-2003

Источник

Стабилитроны в стабилизаторах напряжения

Позвольте уважаемые предложить ещё немного полезной теории, так как практических конструкций на сайте Радиосхемы более чем достаточно. Рассмотрим стабилитроны в стабилизаторах напряжения. При смещении в прямом направлении стабилитрон ведет себя как обычный кремниевый диод с PN переходом, позволяя току течь от анода к катоду. Но в отличие от обычного диода, который блокирует ток при обратном смещении, при достижении определенного порога обратного напряжения стабилитрон начинает проводить ток в противоположном направлении. Пороговое напряжение для этого явления и называется напряжением стабилитрона. Давайте проанализируем несколько аспектов моделирования этих типов схем, которые используются в качестве стабилизаторов напряжения.

Читайте также:  При коротком замыкании сгорел блок питания

Когда напряжение приложенное к стабилитрону превышает пороговое значение, характерное для данного элемента, возникает в области обеднения полупроводников процесс, известный как лавинный пробой. В результате через него протекает большой ток, который ограничивает дальнейшее повышение напряжения. Во время этого процесса создаются электрические заряды в результате столкновения свободных электронов с атомами полупроводника, что, в свою очередь, приводит к выделению тепла и возможности необратимого повреждения устройства.

Но если диод изготовлен с очень тонкой и сильно легированной обедненной областью, можно генерировать обратный ток, создавая достаточно сильное электрическое поле в переходе. Этот процесс полностью обратимый и не повредит его. Точка на горизонтальной оси, от которой начинается стабилизация напряжения на стабилитроне, соответствует так называемому напряжению стабилитрона (VZ), значение которого может быть от единиц до нескольких сотен вольт. Наклон кривой проводимости и минимальное значение обратного тока, с которого запускается процесс, можно точно контролировать во время производственного процесса с допуском менее 1%, изменяя параметры легирования и изготовления.

Стабилизатор напряжения на стабилитроне

Стабилитрон обеспечивает гораздо более высокий уровень стабильности питания, чем может быть достигнут, например, с помощью одной только схемы выпрямителя и фильтрующего конденсатора. В частности, за счет соответствующего легирования полупроводников можно получить практически вертикальный наклон кривой, получая стабилизированное напряжение с незначительной и постоянной пульсацией, которая не изменяется при изменении входного напряжения.

Далее показана схема простейшего стабилизатора напряжения, основанного на стабилитроне. Использовался стабилитрон с VZ = 12 В, а значение последовательного резистора R можно определить по формуле, как показано на рисунке, где Vi — входное напряжение, Vo — стабилизированное выходное напряжение (в данном случае 12 В), а IL — ток, потребляемый нагрузкой.

Без нагрузки (IL = 0) весь ток из схемы будет проходить через стабилитрон, который, в свою очередь, рассеивает его до максимальной своей мощности. Следовательно необходимо тщательно выбирать значение последовательного сопротивления, чтобы не превышать максимальную мощность, которую стабилитрон может рассеять когда к нему не подключена нагрузка. Эта схема способна генерировать ток не более десятков миллиампер, она часто используется для смещения базы транзистора или в качестве входа в операционный усилитель, тем самым получая более высокий выходной ток от стабилизатора.

На схеме показан стабилизатор на шунтирующем транзисторе, способный увеличивать мощность, подаваемую на нагрузку. Выходное напряжение VO определяется формулой: VO = VZ + VBE.

Стандартные напряжения стабилитронов

В продаже представлены стабилитроны с характеристическим напряжением от чуть более 1 В до нескольких сотен вольт. Для каждого значения напряжения обычно доступно одно или несколько значений мощности в диапазоне от чуть менее 0,5 Вт до более 5 Вт. Среди наиболее распространенных семейств стабилитронов — серия маломощных BZX55 с напряжением VZ от 2,4 В до 75 В и максимальной рассеиваемой мощностью до 500 мВт. Семейство силовых стабилитронов BZX85 также широко используется с напряжением VZ от 2,7 до 100 В и максимальной рассеиваемой мощностью до 1300 мВт. Про отечественные Д814 и Д815 говорить смысла нет, так как они уже сошли с радиолюбительской сцены.

Регулятор напряжения со стабилитроном

А это показан простейший пример стабилизатора со стабилитроном. Транзистор подключен как повторитель напряжения, а выходное напряжение примерно на 0,7 В ниже напряжения стабилитрона. Резистор R должен быть выбран таким образом, чтобы стабилитрон всегда был правильно смещен, а базовый ток Q1 был достаточным для перевода его в проводящее состояние. Чтобы ток на стабилитроне не упал до значения, не позволяющего проявиться свойствам стабилитрона, маломощный транзистор 2N2222 можно заменить транзистором Дарлингтона.

Что такое стабилизатор напряжения? Это усилитель постоянного тока с низким выходным сопротивлением, усиливающий опорное напряжение.

Стабилитрон это опорное напряжение, а эмиттерный повторитель является усилителем постоянного тока с коэффициентом усиления меньше 1. Обычно тут применяют транзисторы, но можем добиться большего используя операционный усилитель в качестве усилителя постоянного тока. Так получим намного лучшие параметры стабилизатора.

Это схема — повторитель — с очень точным коэффициентом усиления 1. Вход неинвертирующий не потребляет ток, поэтому он не влияет на значение тока стабилитрона.

Можно конечно при необходимости сделать усилитель с коэффициентом усиления больше 1. Далее показана схема с коэффициентом усиления 3. Коэффициент
усиления определяется по формуле:

ku = R1 + R2 / R2

Тут Ku = 3. Таким образом, выходное напряжение равно + Uz x 3. Изменяя номиналы резисторов, можем изменить коэффициент усиления и можем установить желаемое выходное напряжение. Номиналы резисторов не являются критичными, они могут быть в диапазоне от 1k до 100k, потому что инвертирующий вход тоже не потребляет ток.

Простая транзисторная схема робота следующего по нарисованной линии. Без микроконтроллеров и дорогих деталей.

Класс A — схема самодельного УМЗЧ высокого качества на полевых MOSFET транзисторах.

Современная беспроводная связь — эволюция приёмо-передающей аппаратуры и внедрение цифровой обработки данных.

Источник

Выбор стабилитрона для блока питания

Блок питания «Проще не бывает». Часть вторая

Автор:
Опубликовано 01.01.1970

Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.

Итак, наш блок питания состоит из двух основных узлов — это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.

Схема стабилизатора показана на рисунке.

Это, так называемый параметрический стабилизатор. Состоит он из двух частей:
1 — сам стабилизатор на стабилитроне D с балластным резистором R б
2 — эмиттерный повторитель на транзисторе VT.

Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно — умощителя.

Читайте также:  Как устроены и работают аварийные светильники

Два основных параметра нашего блока питания — напряжение на выходе и максимальный ток нагрузки. Назовем их:
Uвых — это напряжение
и
Imax — это ток.

Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.

Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых.
Это напряжение определяется по формуле:

Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.

Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.

Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно.
Смотри сам:

Если мы берем Uвых=14 вольтам, то получаем P max =1.3*(17-14)*1=3.9 Вт.
А если мы примем Uвых=1.5 вольта, то P max =1.3*(17-1.5)*1=20,15 Вт

То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.

Ну вот, теперь лезем в справочник и выбираем себе транзистор.
Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 — вполне приличный транзистор.

Фу, ну вроде с этим справились. Пошли дальше.

Считаем сам стабилизатор.

Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все — даже базы транзисторов).

I б max =I max / h21 Э min

h21 Э min — это минимальный коэффициент передачи тока транзистора и берется он из справочника Если там указаны пределы этого параметра — что то типа 30…40, то берется самый маленький. Ну, у меня в справочнике написано только одно число — 25, с ним и будем считать, а что еще остается?

I б max =1/25=0.04 А (или 40 мА). Не мало.

Ну давайте будем теперь искать стабилитрон.
Искать его надо по двум параметрам — напряжению стабилизации и току стабилизации.

Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 вольтам, а ток — не менее 40 мА, то есть тому, что мы посчитали.
Полезли опять в справочник.

По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h21Э раз. h21Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h21Э равен 30, то есть мы можем уменьшить ток до 40/30=1.33 мА, что нам вполне подходит.

Теперь посчитаем сопротивление и мощность балластного резистора R б .

R б =(Uвх-Uст)/(I б max +I ст min )

где Uст — напряжение стабилизации стабилитрона,
Iст min — ток стабилизации стабилитрона.

R б = (17-14)/((1.33+5)/1000) = 470 Ом.

Теперь определим мощность этого резистора

P rб =(U вх -U ст )2/R б .

P rб =(17-14)2/470=0,02 Вт.

Собственно и все. Таким образом, из исходных данных — выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.

Однако не расслабляемся — нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).

Итак, смотрим на схему выпрямителя.

Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор — 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале — с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.

Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт.
Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт. Вполне может случится так, что такого трансформатора не найдется, не страшно — в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.

Едем дальше. Определим емкость конденсатора фильтра.

C ф =3200I н /U н K н

где Iн — максимальный ток нагрузки,
Uн — напряжение на нагрузке,
Kн — коэффициент пульсаций.

В нашем случае
Iн = 1 Ампер,
Uн=17 вольтам,
Kн=0,01.

C ф =3200*1/14*0,01=18823.

Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.

Осталось выбрать выпрямительные диоды или диодный мост.

Для этого нам надо знать два основных параметра — максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.

Необходимое максимальное обратное напряжение считается так

U обр max =2U н , то есть U обр max =2*17=34 Вольта.

А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.

Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы.
Впереди у нас стабилизатор для самых ленивых — на интегральной микросхеме и стабилизатор для самых трудолюбивых — компенсационный стабилизатор.

Источник