Меню

Регулировка ампеража на зарядном устройстве



Три простые схемы регулятора тока для зарядных устройств

Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.

Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.

В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.

Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.

Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.

Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

Постараюсь пояснить принцип работы схем максимально простыми словами…

Источник

Блок питания с регулировкой тока и напряжения своими руками

Всем известно, что мощный регулируемый блок питания с регулировкой напряжения и тока самое популярное и востребованное электронное устройство, с изготовления которого начинают свой творческий путь начинающие радиолюбители. Схем очень много, какую выбрать и с чего начинать многие просто теряются. Одним нужен простой лабораторный блок питания с регулировкой напряжения и тока, другим мощное зарядное устройство для зарядки автомобильного аккумулятора, а я предлагаю вам собрать своими руками простой универсальный блок питания с регулировкой напряжения и тока, который можно использовать для выполнения любых задач, питания электронных самоделок и зарядки автомобильного аккумулятора. Все, что от вас потребуется это усидчивость, минимальные знания электроники и умение пользоваться паяльником. А если возникнут вопросы, задавайте их в комментариях, я вам обязательно помогу.

Хватит слов приступим к делу!

На этом рисунке изображена схема блока питания с регулировкой напряжения и тока от 2.4В до 28В и силой тока до 30А.

Важным элементом данной схемы является регулируемый стабилизатор напряжения микросхема TL431 или, как ее еще называют управляемый стабилитрон позволяющий плавно регулировать напряжение от 2.4 вольта до 28 вольт. Благодаря четырем силовым транзисторам, установленным на больших радиаторах, блок питания может выдержать ток до 30А. Также имеется регулировка тока и защита от переполюсовки, поэтому блок питания можно и даже нужно использовать, как зарядное устройство для автомобильного аккумулятора.

Делитель напряжения, построенный на мощном 5 Вт резисторе R1 и переменном резисторе Р1 ограничивает ток на катоде и на управляющем электроде стабилитрона TL431. Вращением ручки переменного резистора Р1 задается выходное напряжение стабилитрона, стабилизатор напряжения TL431, автоматически стабилизирует напряжение заданное переменным резистором Р1. С микросхемы TL431 ток поступает на базу транзистора Т1. Транзистор выполняет роль ключа и управляет двумя мощными биполярными транзисторами Т2 и Т3 соединенных параллельно для увеличения выходной мощности. В выходной каскад транзисторов установлены уравнительные резисторы R2 и R3. Далее ток поступает на плюсовую клейму блока питания.

Читайте также:  Ремонт зарядного устройства vanson bc 2612t

Как работает регулировка тока?

В данной схеме реализована функция ограничения тока на двух мощных полевых транзисторах Т4 и Т5 соединенных параллельно. Давайте рассмотрим, как это работает. С диодного моста ток поступает на стабилизатор напряжения L7812CV, напряжение снижается до 12В, это безопасное значение для затворов транзисторов. Далее ток поступает на делитель напряжения собранный на переменном резисторе Р2 и постоянном резисторе R4. С движка переменного резистора Р2 ток проходит через тока ограничительные резисторы R5 и R6 открывая затворы полевых транзисторов Т4 и Т5. Транзисторы проводят через себя определенное количество тока в зависимости от сопротивления переменного резистора Р2. В данной схеме ток регулируется при любом выходном напряжении.

Также предусмотрена защита от переполюсовки, состоящая из двух светодиодов. Зеленый светодиод сигнализирует о правильном подключении автомобильного аккумулятора к выходу блоку питания, а красный светодиод, о ошибке подключения. Резисторы R7 и R8 ограничивают ток для светодиодов.

А, вот и печатная плата!

На этом рисунке изображена печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Источник

Регулировка ампеража на зарядном устройстве

Если есть желание изготовить зарядное устройство для автомобильной кислотно-свинцовой аккумуляторной батареи своими руками, с автоматическим отключением и установкой зарядного тока, то можно воспользоваться простым схемным решением из этой статьи. Всё что для этого нужно (ну или почти всё) – найти подходящий по габаритной мощности сетевой трансформатор с двумя вторичными обмотками по 18 В.

Схема и конструкция зарядного устройства из этой статьи обеспечивает заряд АКБ максимальным током до 5 А , который устанавливается вручную, начиная с нескольких миллиампер. При возрастании значения напряжения на заряжаемом АКБ в процессе заряда до определённого уровня, который устанавливается в процессе настройки ЗУ , зарядка автоматически прекращается. Схема приведена ниже.

Принцип работы схемы

После того, как произошло подключение аккумулятора к клеммам ЗУ и установка необходимого зарядного тока переменным резистором R2 , напряжение на АКБ будет постепенно повышаться. Когда напряжение на аккумуляторе превысит напряжение на стабилитроне VD4 , транзисторы VT3 и VT4 закроются, и ток заряда прекратится.

Транзистор VT2 задает базовый ток для регулирующего транзистора VT3 и ток через стабилитрон VD4 . Падение напряжения на резисторе R4 , который является датчиком тока, управляет состоянием транзистора VT1 , прикрывая его при увеличении тока, и тем самым осуществляется стабилизация режима заряда. Диод VD5 предохраняет от неправильного подключения аккумулятора (« переполюсовки »).

Настройка схемы

В схеме есть две регулировки, которые необходимо сделать в процессе наладки ЗУ до начала эксплуатации. Первая – установка максимально возможного зарядного тока подстроечным резистором R3 , а вторая – установка напряжения на АКБ резистором R6, при котором процесс заряда прекращается.

Для установки максимального тока заряда, переменный резистор R2 нужно установить в крайнее нижние положение на схеме, а подстроечный R3 – в крайнее верхнее. Затем замкнуть выход ЗУ через амперметр (мультиметр в режиме измерения тока) и после включения в сеть подстроечным резистором R3 выставить значение максимального тока заряда. Минимальное значение начинается с . Транзистор VT4 при этом должен быть установлен на теплоотводе.

Вторая установка делается при разомкнутом выходе ЗУ (ничего не подключено) по вольтметру, подключённому параллельно стабилитрону VD4 подстроечным резистором R6 . Суть регулировки – установить напряжение на клеммах АКБ при котором заряд прекратится.

Читайте также:  Зарядные устройства для аккумуляторов автомобилей кулон

Первый заряд АКБ необходимо осуществлять под контролем, при необходимости корректируя значения зарядного тока и напряжения отключения указанными подстроечными резисторами в реальных условиях зарядки.

Печатная плата для схемы показана на рисунке ниже.

Источник

Тиристорное импульсное зарядное устройство 10А на КУ202

Тиристорное импульсное зарядное устройство 10А на КУ202

Здравствуйте ув. читатель блога «Моя лаборатория радиолюбителя».

В сегодняшней статье речь пойдет о давно «заюзаной», но очень полезной схеме тиристорного фазоимпульсного регулятора мощности, которое мы будем использовать как зарядное устройство для свинцовых аккумуляторных батарей.

Начнем с того, что зарядное на КУ202 имеет целый ряд преимуществ:
— Способность выдерживать ток заряда до 10 ампер
— Ток заряда импульсный, что, по мнению многих радиолюбителей, помогает продлить жизнь аккумулятору
— Схема собрана с не дефицитных, недорогих деталей, что делает ее очень доступной в ценовой категории
— И последний плюс- это легкость в повторении, что даст возможность ее повторить, как новичку в радиотехнике, так и просто владельцу автомобиля, вообще не имеющего знания в радиотехнике, которому нужна качественная и простая зарядка.

Со временем попробовал доработанную схему с автоматическим отключением аккумулятора, рекомендую почитать Зарядное для автомобильного аккумулятора
В свое время я собирал эту схему на коленке за 40 минут вместе с травкой платы и подготовкой компонентов схемы. Ну хватит рассказов, давайте рассмотрим схему.

Схема тиристорного зарядного устройства на КУ202

Перечень используемых компонентов в схеме
C1 = 0,47-1 мкФ 63В

R1 = 6,8к — 0,25Вт
R2 = 300 — 0,25Вт
R3 = 3,3к — 0,25Вт
R4 = 110 — 0,25Вт
R5 = 15к — 0,25Вт
R6 = 50 — 0,25Вт
R7 = 150 — 2Вт
FU1 = 10А
VD1 = ток 10А, желательно брать мост с запасом. Ну на 15-25А и обратное напряжение не ниже 50В
VD2 = любой импульсный диод, на обратное напряжение не ниже 50В
VS1 = КУ202, Т-160, Т-250
VT1 = КТ361А, КТ3107, КТ502
VT2 = КТ315А, КТ3102, КТ503

Как было сказано ранее схема является тиристорным фазоимпульсным регулятором мощности с электронным регулятором тока зарядки.
Управление электродом тиристора осуществляется цепью на транзисторах VT1 и VT2. Управляющий ток проходит через VD2, необходимый для защиты схемы от обратных скачков тока тиристора.

Резистором R5 определяется ток зарядки аккумулятора, который должен быть 1/10 от емкости АКБ. К примеру АКБ емкостью 55А надо заряжать током 5.5А. Поэтому на выходе перед клемами зарядного устройства желательно поставить амперметр, для контроля за током зарядки.

По поводу питания, для данной схемы подбираем трансформатор с переменным напряжением 18-22В, желательно по мощности без запаса, ведь используем тиристор в управлении. Если напряжение больше- R7 поднимаем до 200Ом.

Так же не забываем что диодный мост и управляющий тиристор надо ставить на радиаторы через теплопроводящую пасту. Так же если вы используете простые диоды типа как Д242-Д245, КД203, помните что их надо изолировать от корпуса радиатора.

На выход ставим предохранитель на нужные вам токи, если вы не планируете заряжать АКБ током выше 6А, то предохранителя на 6,3А вам хватит с головой.
Так же для защиты вашего аккумулятора и зарядного устройства, рекомендую поставить мою схему защиты от переполюсовки на реле или схему на компараторе, которая помимо защиты от переполюсовки защитит зарядное от подключения дохлых аккумуляторов с напряжением менее 10,5В.
Ну вот в принципе рассмотрели схемку зарядного на КУ202.

Читайте также:  Высокоскоростное автомобильное зарядное устройство usb

Печатная плата тиристорного зарядного устройства на КУ202

Источник

Зарядное устройство из реле регулятора

Зарядное устройство из реле регулятора

Здравствуйте. Сегодня ради спортивного интереса попробовал одну схему зарядного устройства с применением реле регулятора от автомобиля. Схема действительно рабочая и имеет право жить, но есть одна недоработка в схеме о которой пойдет дальше речь
Вот схема зарядного устройства с реле регулятором

Схема довольна известна в интернете и часто ее повторяют, и в этом нет ничего удивительного. Что бы ее собрать не нужно не паяльника, не измерительных приборов, необходимы только парочка проводов с фишками, реле зарядки, реле обычное автомобильное 30А и диодный мост с трансформатором. В качестве источника питания использовать буду регулируемый блок питания переменного тока

Еще до сборки раздумывал как же будет срабатывать ограничение, если нагрузка коммутируется реле, а не полупроводником. По хорошему когда напряжение на АКБ меньше нормы 14,4В, реле должно подавать питание на основное реле и коммутировать ток для зарядки. Когда напряжение подходит к пределу 14,4В, управляющий транзистор закрывается и реле должно отключиться. Но на этом не все, напряжение после отключения упало и соответственно реле регулятор снова включает силовое реле, опять бежит ток, опять напряжение поднялось до нормы и реле отключается. Так происходит стабилизация напряжения, но если посмотреть эти периоды включения-отключения, то этот процес проходит около 100 раз в секунду. Зная что у реле есть механический ресурс, делаю вывод что реле так долго не проживет. Это теория, надо же в практике попробовать.

Собрал все на коленке, а точнее на полу в кухне минут за 20 примерно. Подключил свой экспериментальный AGM аккумулятор, некоторое время заряжалось нормально, а потом этот треск. По началу испугался, звук как будто коротит что то, а оказалось отсекатель начал работать. Этот треск не прекращался и в итоге моя теория была верна, реле не сможет так долго жить. Даже если механические ресурс реле не успеет отработать, то контактная пара явно не выживет из-за постоянной дуги между контактами.

Наверное пора доработать, а именно добавить паралельно контактам реле балластный резистор. Этот резистор выполняет две функции:
— сохраняет контакты реле, так как пусковых токов таких больших уже не будет и дуга загораться не будет;
— снижает частоту включения реле, за счет того, что при размыкании основного реле, часть тока продолжает течь на АКБ и напряжение на нем не так быстро падает.

Установка резистора действительно помогла и теперь реле включается — отключается реже. Для индикации окончания заряда добавит светодиод и резистор паралельно резисторам с балласта
Проблема частично решена, но частота слишком высока. Тогда вот что придумал, на 67 ногу реле добавил конденсатор, что бы сгладить пульсации на силовом реле

Установил в общем конденсатор на 470мкФ 25В и песня запела по новой, теперь реле щелкает 1-2 раза в секунду, что уже не плохой результат. По характеру отсечения, напоминает отсекатели в тиристорных зарядных устройствах, но не думаю, что такой характер отсечения дурно повлияет на аккумулятор
Замеры проводил китайским ваттметром, кстати очень удобная штука для замера емкости, потребляемой мощности, тока и напряжения. Стоит около 600 рублей, вот ссылка на ваттметр со скидкой.

Источник

Adblock
detector