Меню

Простой импульсный блок питания на IR2153

Простой, импульсный блок питания на IR2153

Сегодня поговорим и рассмотрим распространённую схему импульсного источника питания построенную на микросхеме IR2153.

Итак, мы имеем схему импульсного источника питания, которая запитывается от 220 вольт и скажем на выходе у неё появляется некоторое напряжение для запитки чего-либо, то есть, какой-то усилитель, либо какая-то другая конструкция.

По входу у нас 220 переменки, идёт на фильтр L1 с плёночными С1 и С2 конденсаторами, но этот дроссель можно убрать из схемы и просто заменить перемычками, всё прекрасно будет работать и без него.

Дальше напряжение поступает на полноценный двухполупериодный диодный мост, я использовал не готовую диодную сборку, а обычные диоды 1N4007, 4 диода собрал из них диодный мост, на диодном мосту напряжение выпрямляется, но выпрямляется не до конца, потому что там, всё равно остается какая-то полуволна, этот синус поступает на сглаживающий конденсатор, в данном случае здесь 100 микрофарад 400 вольт.

Сглаживающий конденсатор, если когда поступает на него напряжение мультиметром сделать замер, напряжение будет чуть больше, чем скажем 220 вольт, может быть 250-280 вольт. С чем это связано? — это конденсатор заряжается до своего амплитудного значения, дальше после сглаживающего конденсатора напряжение поступает на схему.

Минус диодного моста у нас получается общий, то есть для запитки всей схемы силовой части и для микросхемы это IR2153, то есть для генератора.

Питание микросхемы осуществляется — плюс на первый вывод, минус на четвертый вывод. Микросхема запитывается через цепочку, R1, VD3, сглаживающий конденсатор С4, который сглаживает помехи от резистора и всей этой цепочки, чтобы микросхема нормально работала.

При подключении и сборки всей схемы необходимым мультиметром проверить выводы на микросхеме 1 + и 4 нога минус напряжение должно быть в районе 15 вольт, тогда микросхема будет нормально работать и генерировать импульсы.

Дальше у нас между 8 и 6 ногой микросхемы стоит пленочный конденсатор (С6) на 220 нанофарад, вообще емкость этого конденсатора подбирается исходя из частоты генератора, то есть в данном случае частота генератора в районе 47- 48 килогерц, конденсатор может быть и 0,2 микрофарад и 0,47 и 0,68 даже один микрофарад, то есть, тут этот конденсатор особо не критичен.

Источник

Импульсный блок питания усилителя на IR2151, IR2153

Импульсные блоки питания – наиболее эффективный класс вторичных источников питания. Они характеризуются компактными размерами, высокой надежностью и КПД. К недостаткам можно отнести лишь создание высокочастотных помех и сложность проектирования /реализации.

Все импульсные ПБ – это своего рода инверторы (системы, генерирующие переменное напряжение на выходе высокой частоты из выпрямленного напряжения на входе).
Сложность таких систем даже не в том, чтобы сначала выпрямить входное сетевое напряжение, или в последующем преобразовать выходной высокочастотный сигнал в постоянный, а в обратной связи, которая позволяет эффективно стабилизировать выходное напряжение.

Особо сложным здесь можно назвать процесс управления выходными напряжениями высокого уровня. Очень часто блок управления питается от низковольтного напряжения, что порождает необходимость согласования уровней.

Драйверы IR2151, IR2153

Для того, чтобы управлять независимо (или зависимо, но со специальной паузой, исключающей одновременное открытие ключей) каналами верхнего и нижнего ключа, применяются самотактируемые полумостовые драйвера, такие как IR2151 или IR2153 (последняя микросхема является улучшенной версией исходной IR2151, обе взаимозаменяемы).

Существуют многочисленные модификации данных схем и аналоги от других производителей.

Типовая схема включения драйвера с транзисторами выглядит следующим образом.

Рис. 1. Схема включения драйвера с транзисторами

Тип корпуса может быть PDIP или SOIC (разница на картинке ниже).

Рис. 2. Тип корпуса PDIP и SOIC

Модификация с буквой D в конце предполагает наличие дополнительного диода вольтодобавки.

Различия микросхем IR2151 / 2153 / 2155 по параметрам можно увидеть в таблице ниже.

ИБП на IR2153 – простейший вариант

Сама принципиальная схема выглядит следующим образом.

Рис. 3. Принципиальная схема ИБП

На выходе можно получить двухполярное питание (реализуется выпрямителями со средней точкой).

Мощность БП можно увеличить за счет изменения параметров емкости конденсатора C3 (считается как 1:1 – на 1 Вт нагрузки требуется 1 мкф).

В теории выходную мощность можно нарастить до 1.5 кВт (правда для конденсаторов такой ёмкости потребуется система soft-старта).

При конфигурации, обозначенной на принципиальной схеме, достигается выходная сила тока 3,3А (до 511 В) при использовании в усилителях мощности, или 2,5А (387 В) – при подключении постоянной нагрузки.

ИБП с защитой от перегрузок

Рис. 4. Схема ИБП с защитой от перегрузок

В данном БП предусмотрена система перехода на рабочую частоту, исключающая броски пускового тока (софт-старт), а также простейшая защита от ВЧ помех (на входе и выходе катушки индуктивности).

ИБП мощностью до 1,5 кВт

Читайте также:  Продать блоки питания быстро и дорого

Схема ниже может обеспечивать работу с мощными силовыми транзисторами, такими как SPW35N60C3, IRFP460 и т.п.

Рис. 5. Схема ИБП мощностью до 1,5 кВт

Управление мощными VT4 и VT5 реализовано через эмиттерные повторители на VT2 и VT1.

БП усилителя на трансформаторе из БП компьютера

Часто случается так, что комплектующие покупать практически и не нужно, они могут стоять и пылиться в составе давно неиспользуемой техники, например, в системном блоке ПК где-то в подвале или на балконе.

Ниже приведена одна из достаточно простых, но не менее работоспособных схем ИБП для усилителя.

Рис. 6. Схема ИБП для усилителя

Пример готовой печатной платы может выглядеть следующим образом.

Рис. 7. Печатная плата устройства

А полностью реализованный узел так.

Рис. 8. Внешний вид устройства

Мнения читателей
  • Александр. / 09.08.2020 — 20:23

Как сделать что бы напряжение регулировалось на рис 6?

dima / 23.05.2020 — 13:45

плёнка в цепи трансформатора защищает последний от постоянной составляющей, без него трансформатор может намагнититься и бах.

Evgeniy Chubich / 05.04.2020 — 09:51

Конденсатор в цепи трансформатора нужен. МОЙ ОПЫТ. Ёмкость кондёра подбираю от максимальной мощности. При завышенной ёмкости транзисторы не выдирживают ток и летят. На эл. сварке ток регулирую ёмкостью кандёра.

Владимир / 11.03.2020 — 13:34

Не нужно думать о прошлом! Конденсатор развязки силового трансформатора не нужен, его роль выполняют конденсаторы фильтра со средней точкой. На частоте 50 Кгц разница в сопротивлении 220 мф и 1 мф соизмеримы. Как то так

Алексей / 07.10.2019 — 16:35

По даташиту нужен кондер в цепи запитки трансформатора, на рис. 6 его нет. Транс уйдёт в перенасыщение.

Андрей / 20.07.2019 — 18:26

Есть ли в схеме на рисунке 4 стабилизация напряжения через обратную связь?

александр / 24.04.2019 — 08:24

на рис 6 ошибка нет конденсатора в цепи трансформатора выхода

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник



Сетевой импульсный блок питания на IR2153/2155

Импульсный блок питания я решил сделать потамучто он на первый взгляд гораздо дешевле сетевого трансформатора, конечно если речь идёт о мощности более 150вт, хотя с такими темпами роста цен на Чип Диповские торы сейчас уже и вместо ТТП60 выгоднее использовать ИБП 🙂 Во вторых вес получается значительно меньше, в третьих ИБП может работать при повышенном напряжении сети без каких либо отрицательных последствий, естественно в разумных пределах, всё ограничено Vds полевиков и напряжением основных фильтрующих кондёров. А вот сетевые трансы при повышении напряжения в сети начинают сильно гудеть и гретья. Также из за очень низкого сопротивления вторичной обмотки, выходное сопротивление ИБП меньше чем у простых блоков питания. Главный недостаток ИБП это ВЧ помехи. Надо принимать меры чтоб их как можно сильнее подавить. Ещё в момент подачи питания он потребляет очень большой пиковый ток, поэтому на больших мощностях надо применять специальные системы софт старта и мягкой зарядки фильтрующих конденсаторов и конденсаторов делителя. В моём случае киловатты не требуются поэтому я обошёлся просто последовательной цепочкой из резистора и термистора. Некоторые могут подумать что из за этой цепочки будет проседать выходное напряжение, но всё не так страшно. Предположим если начальное сопротивление её 10ом то при токе 2А (это 440вт) на ней просядет 20в тоесть это менее 10%. Надёжность и ЭМИ блока питания в первую очередь зависят от разводки платы, она перетерпела доработок и изменений не меньше чем для TDA8924. Я считаю что сейчас самый оптимальный вариант, по крайней мере на 1 слое лучше не сделать. Очень не рекомендую что либо менять на плате в высоковольтной части и части управления.

Вот схема моего блока питания.
Сначала идут резисторы для плавной зарядки конденсаторов делителя, потом сетевой фильтр. У меня стоит дроссель PLA на 1А, на плату можно установить также дроссель из компьютерного блока питания. Далее плоский низкочастотный диодный мост GBU, они бывают на токи до 25А. Чтобы поставить более распространённый KBU плату надо слегка изменить (отодвинуть конденсаторы делителя от радиатора). Затем стоит делитель. Переусердствовать с этими ёмкостями не стоит, слишком много ставить нельзя тк при каждом включении есть вероятность сжигать предохранитель, а если повезёт то и автомат защиты в щитке :)) Оптимально 150-330мк 200в. После организовано питание микросхемы от средней точки делителя, это позволяет снизить суммарное тепловыделение схемы на резисторах примерно на 1вт. Схема включения 2153 стандартная из даташита. Чтобы выбрать P1 для нужной частоты читайте даташит на мс. Полевые транзисторы IRFI840GLC это лучшее что может быть для этой схемы от IR. С другими фирмами сталкиваться не приходилось. Если хотите сэкономить то можно поставить IRFIBC30G они чуть послабее но даже их хватит для мощности около 300вт, больше 400вт я бы не стал снимать с такого ИБП. Какие либо другие полевики ставить не рекомендую. Иначе придётся уменьшать R2, R3 и это приведёт к увеличению тепловыделения на них. Напряжение на мс во время работы должно быть не менее 10в! Оптимально 11-14. Цепочка L1 C13 R8 слегка облегчает режим работы полевиков, в принципе её можно просто закоротить, сильно хуже не станет, а ЭМИ даже слегка уменьшатся. Снаббер R7 C12 тоже не обязателен но желателен, для подавления вч грязи.

Читайте также:  Калькулятор блока питания на Outervision com

Выходные дроссели я мотал на ферритовых гантельках проницаемостью 600НН. Индуктивность их около 10мкг, намотано 2 слоя провода около 1мм. Можно мотать на стержнях от старых приёмников, хватит витков 10-15. Основные конденсаторы выходного фильтра Jamicon WL. Если нет возможности поставить Low ESR то параллельно конденсаторам стандартного типа нужно добавить керамику 0.1-0.22мк. Но Low ESR в этом месте крайне желательны, ток пульсаций у 4700мк/35в Jamicon WL больше чем у стандартного 22000/35в!

Подробно расписывать про расчёт и намотку трансформатора не буду, тк в интернете на эту тему очень много написано. Я считаю в программе Transformer 2. Результат похож на правду. Индукцию нужно выбирать как можно меньше, лучше не более 0.25. Частоту в районе 40-80к. Очень не рекомендую использовать наши кольца из за сильного разброса параметров и больших потерь. После того как я попробовал кольца Epcos про наши просто забыл. Они дороже в 3-5 раз но они того стоят! Плата составлялась под кольцо 30х19х20. Во время проверки ИБП надо быть осторожным. НЕЛЬЗЯ тыкать землёй осциллографа на выход (точку соединения D-S полевиков). Первый раз можно последовательно блоку питания включить лампу 220в 25-40вт, но сильно нагружать в этом случае его нельзя только ватт на 3-5 макс.

Источник

Простой, самодельный импульсный блок питания на IR2153 своими руками

Импульсный блок питания в руках

Инструкция по созданию универсального, простого импульсного блока питания на IR2153 своими руками. Представлена схема, более 40 пошаговых фото и детальные пояснения.

  1. Схема, необходимые компоненты
  2. Сборка своими руками
  3. Тестирование импульсного блока питания
  4. Видео о создании импульсного блока питания

Недавно мы говорили о создании лабораторного блока питания своими руками. Сегодня мы рассмотрим пошагово, как создать универсальный импульсный блок питания на микросхеме IR2153. В интернете полно схем БП на IR2153, но каждая из них имеет свои недостатки, а вот представленная схема — универсальная.

Схема импульсного блока питания на IR2153, необходимые компоненты

Как выглядит схема импульсного блока питания

Подробная схема импульсного БП

Первое, что бросается в глаза, это использование двух высоковольтных конденсаторов вместо одного на 400В. Таким образом можно сразу убить двух зайцев. Эти конденсаторы можно достать из старых блоков питания от компьютера, не тратя на них деньги.

Конденсаторы на схеме

Точка с напряжением на схеме

Плата с конденсаторами

Два конденсатора в руках

Если блока нет, то цены на пару таких конденсаторов ниже, чем на один высоковольтный. Емкость конденсаторов одинаковая и должна быть из расчета 1 мкФ на 1 Вт выходной мощности. Это означает, что для 300 Вт выходной мощности вам потребуется пара конденсаторов по 330 мкФ каждый.

Важно также учитывать следующее соответствие:

  • 150 Вт = 2х120 мкФ
  • 300 Вт = 2х330 мкФ
  • 500 Вт = 2х470 мкФ

Также, если использовать такую топологию, отпадает потребность во втором конденсаторе развязки, что сэкономит место. Кроме того, напряжение конденсатора развязки уже должно быть не 600 В, а всего лишь 250 В. Сейчас вы можете видеть размеры конденсаторов на 250В и на 600В.

Конденсаторы на 250В и на 600В в руках

Следующая особенность схемы — запитка для IR2153. Все, кто строил блоки на ней, сталкивались с сильным нагревом питающих резисторов.

Схема запитки для IR2153

Даже если их ставить от переменки, выделяется очень много тепла. Чтобы этого избежать, вместо резистора используем конденсатор. Это предотвратит нагрев элемента по питанию.

Место расположения конденсатора

Также плата оснащена защитой, но в первоначальном варианте схемы ее не было.

Защита на схеме блока питания

Установка нового элемента на плату блока питания

Обратная сторона печатной платы для БП

После тестов на макете выяснилось, что для установки трансформатора слишком мало места и поэтому схему пришлось увеличить на 1 см, это дало лишнее пространство, на которое нужно установить защиту. Если она не нужна, можно просто поставить перемычки вместо шунта и не устанавливать компоненты, отмеченные красным цветом.

Расположение перемычки на схеме

Компоненты на плате, которые не нужно устанавливать

Ток защиты регулируется с помощью подстроечного резистора:

Подстроечный резистор на схеме

Номиналы резисторов шунта изменяются в зависимости от максимальной выходной мощности. Чем она больше, тем меньше нужно сопротивление. Например, для мощности до 150 Вт нужны резисторы на 0,3 Ом. Если мощность 300 Вт, то лучше использовать резисторы на 0,2 Ом. При 500 Вт и выше ставим резисторы с сопротивлением 0,1 Ом. Данный блок не стоит собирать мощностью выше 600 Вт.

Читайте также:  Места для размещения блоков питания трансформаторов

Также нужно сказать пару слов про работу защиты. Она тут икающая. Частота запусков составляет 50 Гц. Это происходит потому, что питание взято от переменки, следовательно, сброс защелки происходит с частотой сети.

Принцип работы защиты отображён на схеме

Если вам нужен защелкивающийся вариант, то в таком случае питание микросхемы IR2153 нужно брать постоянное, а точнее — от высоковольтных конденсаторов. Выходное напряжение данной схемы будет сниматься с двухполупериодного выпрямителя.

Питание защелкивающегося варианта защиты

Основным диодом будет диод Шоттки в корпусе ТО-247, ток выбираете под ваш трансформатор.

Диод Шоттки в руках

Если нет желания брать большой корпус, то в программе Layout его легко поменять на ТО-220. По выходу стоит конденсатор на 1000 мкФ, его с головой хватает для любых токов, так как при больших частотах емкость можно ставить меньше чем для 50-ти герцового выпрямителя.

Расположение выходного конденсатора на 1000 мкФ

Как выглядит выходной конденсатор на 1000 мкФ

Также необходимо отметить и использование некоторых вспомогательных элементов в обвязке трансформатора:

Кроме того, не забываем об Y-конденсаторе между землями высокой и низкой стороны, который гасит помехи на выходной обмотке блока питания.

Нельзя пропускать и частотозадающую часть схемы.

Это конденсатор на 1 нФ, его номинал автор не советует менять, а вот резистор задающей части он поставил подстроечный, на это были свои причины. Первая из них, это точный подбор нужного резистора, а вторая — это небольшая корректировка выходного напряжения с помощью частоты. А сейчас небольшой пример, допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26В, а вам нужно 24В. Меняя частоту можно найти такое значение, при котором на выходе будут требуемые 24В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и вращая ручку резистора, добиваемся нужного сопротивления.

Резистор на схеме

Это конденсатор на 1 нФ, его номинал менять не советуем, а вот резистор задающей части можно установить подстроечный, на это есть свои причины. Первая из них — это точный подбор нужного резистора, а вторая — это небольшая корректировка выходного напряжения с помощью частоты.

Небольшой пример: допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26 В, а вам нужно 24 В. Меняя частоту, можно найти такое значение, при котором на выходе будут требуемые 24 В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и, вращая ручку резистора, добиваемся нужного сопротивления.

Расположение резистора с нужным сопротивлением

Установка нужного сопротивления на резисторе

Печатную плату для импульсного блока питания на IR2153 можно скачать ниже:

Импульсный блок питания на IR2153 — сборка своими руками

Сейчас вы можете видеть 2 макетные платы, на которых производились испытания. Они очень похожи, но плата с защитой немного больше.

Макетные платы в руках

Макетки сделаны для того, чтобы можно было заказать изготовление данной платы в Китае.

Демонстрация обратной стороны печатной платы

Технические компоненты на лицевой стороне платы

Тыльная сторона платы для импульсного блока питания

Вот плата уже готова. Выглядит все таким образом. Сейчас быстренько пройдемся по основным элементам ранее не упомянутым. В первую очередь это предохранители. Их тут 2, по высокой и низкой стороне.

Указание на предохранители

Предохранитель зажат двумя пальцами

Далее видим конденсаторы фильтра.

Указание на конденсаторы фильтра

Их можно достать из старого блока питания компьютера. Дроссель наматываем на кольце т-9052, 10 витков проводом сечением 0,8 мм 2 жилы. Однако можно применить дроссель из того же компьютерного блока питания. Диодный мост — любой, с током не меньше 10 А.

Диодный мост в руке

Еще на плате имеются 2 резистора для разрядки емкости, один по высокой стороне, другой — по низкой.

Указание на резистор для разрядки ёмкости

Второй резистор для разрядки ёмкости

Ну и остается дроссель по низкой стороне, его мотаем 8–10 витков на таком же сердечнике, что и сетевой. Как видим, данная плата рассчитана под тороидальные сердечники, так как они при одинаковых размерах с Ш-образными, имеют большую габаритную мощность.

Дроссель для платы

Тестирование самодельного импульсного блока питания на IR2153

Настало время протестировать устройство. Пока основным советом является производить первое включение через лампочку на 40 Вт.

Простая схема тестирования блока питания

Лампочка подключена к блоку питания

Если все работает в штатном режиме, то лампу можно откинуть. Проверяем схему на работу. Как видим, выходное напряжение присутствует. Проверим как реагирует защита. Скрестив пальцы и закрыв глаза, коротим выводы вторички.

Искусственное создание короткого замыкания на блоке питания

Как видим, защита сработала, все хорошо. Теперь можно сильнее нагрузить блок. Для этого воспользуемся нашей электронной нагрузкой. Подключим 2 мультиметра, чтоб мониторить ток и напряжение. Начинаем плавно поднимать ток.

Блок питания подключён к 2-м мультиметрам

Результат тестирования БП на 2-х Амперах

Как видим при нагрузке в 2А, напряжение просело незначительно. Если поставить мощнее трансформатор, то просадка уменьшится, но все равно будет, так как этот блок не имеет обратной связи, поэтому его предпочтительнее использовать для менее капризных схем.

  • Смотрите также, как создать 6-вольтный БП на BQ24450

Итак, где использовать универсальный импульсный блок питания на IR2153? В блоках для DC-DC, для усилителей, паяльников, ламп, двигателей.

Видео о создании импульсного блока питания на IR2153 своими руками:

Источник

Простой импульсный блок питания на IR2153

Простой, импульсный блок питания на IR2153

Сегодня поговорим и рассмотрим распространённую схему импульсного источника питания построенную на микросхеме IR2153.

Итак, мы имеем схему импульсного источника питания, которая запитывается от 220 вольт и скажем на выходе у неё появляется некоторое напряжение для запитки чего-либо, то есть, какой-то усилитель, либо какая-то другая конструкция.

По входу у нас 220 переменки, идёт на фильтр L1 с плёночными С1 и С2 конденсаторами, но этот дроссель можно убрать из схемы и просто заменить перемычками, всё прекрасно будет работать и без него.

Дальше напряжение поступает на полноценный двухполупериодный диодный мост, я использовал не готовую диодную сборку, а обычные диоды 1N4007, 4 диода собрал из них диодный мост, на диодном мосту напряжение выпрямляется, но выпрямляется не до конца, потому что там, всё равно остается какая-то полуволна, этот синус поступает на сглаживающий конденсатор, в данном случае здесь 100 микрофарад 400 вольт.

Сглаживающий конденсатор, если когда поступает на него напряжение мультиметром сделать замер, напряжение будет чуть больше, чем скажем 220 вольт, может быть 250-280 вольт. С чем это связано? — это конденсатор заряжается до своего амплитудного значения, дальше после сглаживающего конденсатора напряжение поступает на схему.

Минус диодного моста у нас получается общий, то есть для запитки всей схемы силовой части и для микросхемы это IR2153, то есть для генератора.

Питание микросхемы осуществляется — плюс на первый вывод, минус на четвертый вывод. Микросхема запитывается через цепочку, R1, VD3, сглаживающий конденсатор С4, который сглаживает помехи от резистора и всей этой цепочки, чтобы микросхема нормально работала.

При подключении и сборки всей схемы необходимым мультиметром проверить выводы на микросхеме 1 + и 4 нога минус напряжение должно быть в районе 15 вольт, тогда микросхема будет нормально работать и генерировать импульсы.

Дальше у нас между 8 и 6 ногой микросхемы стоит пленочный конденсатор (С6) на 220 нанофарад, вообще емкость этого конденсатора подбирается исходя из частоты генератора, то есть в данном случае частота генератора в районе 47- 48 килогерц, конденсатор может быть и 0,2 микрофарад и 0,47 и 0,68 даже один микрофарад, то есть, тут этот конденсатор особо не критичен.

Источник

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

IR2153 — параметры микросхемы, даташит и схемы блоков питания

На основе микросхемы IR2153 и силовых IGBT транзисторов было сконструировано множество схем, таких как драйвер и генератор индукционного нагревателя, источник питания для катушки Тесла, DC-DC преобразователи, импульсные источники питания и так далее. А связка NGTB40N120FL2WG + IR2153 работают вместе как нельзя лучше, где IR2153 является драйвером — задающим генератором импульсов, а пара биполярных транзисторов с изолированным затвором на 40А/1000В может обрабатывать большой ток нагрузки.

Схемы включения IR2153

IR2153 - параметры микросхемы, даташит и схемы блоков питанияПринципиальная схема включения IR2153 IR2153 - параметры микросхемы, даташит и схемы блоков питанияIR2153 — схема электрическая БП IR2153 - параметры микросхемы, даташит и схемы блоков питанияСхема Теслы на IR2153

Если вы собираетесь повторить одну из этих схем — вот архив с файлами печатных плат. Схема формирователя стробирующих импульсов для их управления работает от 15 В постоянного тока — на транзисторы выходного каскада подаётся до 400 В напряжения.

IR2153 - параметры микросхемы, даташит и схемы блоков питания

IR2153 импульсный блок питания на плате

Кстати, IR2153 — это улучшенная версия популярных микросхем IR2155 и IR2151, которая включает высоковольтный полумостовой драйвер затвора. IR2153 предоставляет больше возможностей и проще в использовании, чем предыдущие м/с. Тут имеется функция отключения, так что оба выхода формирователя стробирующих импульсов могут быть отключены с помощью низкого напряжения сигнала. Помехоустойчивость была значительно улучшена, как за счет снижения пиковых импульсов. Наконец, особое внимание было уделено максимально всесторонней защите от электростатических разрядов на всех выводах.

Читайте также:  Инструкция и руководство для BBK LT1514S на русском

Источник



Зарядное устройство на ир2153

Я бы убрал печатный проводник между ногами сетевого конденсатора, или сузить её в месте между ногами. Несколько импульсных устройств вернулись мне назад по причине пробоя именно в таком же месте , расстояния было 0.318mm. В последствии печатки были перерисованы и больше таких случаев не было.

Добавлено (17.10.2016, 22:29)
———————————————
Расстояния между трассами в 0,318mm более чем достаточно для 150-ти вольт , но практика показала что всё же мало

Сергей-78 Последняя схема что ты выложил практически схожа с эталонной, там только один силовой электролит стоит и незначительно отличаются детали, откуда она?

Не знаю. Схема рабочая.
Вот еще одна схема на IR2153 с условной стабилизацией напряжения. Подходит для зарядного устройства. Принцип работы такой. При достижении на выходе трансформатора напряжения стабилизации ТЛ431, последняя открывается и засвечивается светодиод оптрона. Транзистор оптрона открывается и глушит(обесточивает) ИР2153. Блок питания уходит в спячку, пока напряжение на выходе не упадет. Дальше все по кругу. Стабилизация условная, поскольку носит импульсный характер работы и не подойдет для устройств, требовательных к качеству питающего напряжения. АКБ к таким не относятся.
Есть в данной схеме, также защита от перегрузки по току. При токе примерно в 700 ма, (при сопротивлении датчика тока1 Ом), откроется транзистор VT1 и также обесточит микросхему. Это примерно 200 ват выходной мощности, до срабатывания защиты. Надо сказать что это не значит, что сработала защита и блок полностью отключился. Он переодически будет запускаться и останавливаться, то есть защита носит ограничительный характер.
Схема когда то была опубликована в одном из журналов, не помню в каком.

Мои замечания по этой схеме. Считаю что обесточивать микросхему не есть самый оптимальный вариант. В микросхеме IR2153 уже есть вывод , на который при подаче сигнала низкого уровня, останавливается работа.Функция выключения в данной микросхеме совмещена с выводом СТ(3 вывод), при этом выключение обоих каналов происходит при подаче управляющего сигнала низкого уровня. По простому замыкаем на минус питания.
Ну и конечно отсутствует снаббер.

Сергей-78, Подумываю входную часть ЗУ переделать по этой схеме, мне кажется она надёжнее будет, заодно и фильтр на плате развести..

Сергей-78, Проштудировал в инете подобные схемы и остановился пока на варианте подобного БП для шуруповёрта, в принципе я думаю эту схему можно брать как стандарт для питания или зарядки устройств, она мне кажется более стабильной по сравнению с предыдущей.
Подправил конкретно початку, подписал детали, для более удобного восприятия..

Всем доброго времени суток,решил собрать импульсное зарядное,но опыта расчета комплектующих нет, помогите пожалуйста с расчетом трансформатора,RCD клампера и выбором транзистора.Сделал расчет но сомневаюсь будет работать или нет

Источник

Простой, самодельный импульсный блок питания на IR2153 своими руками

Импульсный блок питания в руках

Инструкция по созданию универсального, простого импульсного блока питания на IR2153 своими руками. Представлена схема, более 40 пошаговых фото и детальные пояснения.

  1. Схема, необходимые компоненты
  2. Сборка своими руками
  3. Тестирование импульсного блока питания
  4. Видео о создании импульсного блока питания

Недавно мы говорили о создании лабораторного блока питания своими руками. Сегодня мы рассмотрим пошагово, как создать универсальный импульсный блок питания на микросхеме IR2153. В интернете полно схем БП на IR2153, но каждая из них имеет свои недостатки, а вот представленная схема — универсальная.

Читайте также:  Как промыть форсунки своими руками

Схема импульсного блока питания на IR2153, необходимые компоненты

Как выглядит схема импульсного блока питания

Подробная схема импульсного БП

Первое, что бросается в глаза, это использование двух высоковольтных конденсаторов вместо одного на 400В. Таким образом можно сразу убить двух зайцев. Эти конденсаторы можно достать из старых блоков питания от компьютера, не тратя на них деньги.

Конденсаторы на схеме

Точка с напряжением на схеме

Плата с конденсаторами

Два конденсатора в руках

Если блока нет, то цены на пару таких конденсаторов ниже, чем на один высоковольтный. Емкость конденсаторов одинаковая и должна быть из расчета 1 мкФ на 1 Вт выходной мощности. Это означает, что для 300 Вт выходной мощности вам потребуется пара конденсаторов по 330 мкФ каждый.

Важно также учитывать следующее соответствие:

  • 150 Вт = 2х120 мкФ
  • 300 Вт = 2х330 мкФ
  • 500 Вт = 2х470 мкФ

Также, если использовать такую топологию, отпадает потребность во втором конденсаторе развязки, что сэкономит место. Кроме того, напряжение конденсатора развязки уже должно быть не 600 В, а всего лишь 250 В. Сейчас вы можете видеть размеры конденсаторов на 250В и на 600В.

Конденсаторы на 250В и на 600В в руках

Следующая особенность схемы — запитка для IR2153. Все, кто строил блоки на ней, сталкивались с сильным нагревом питающих резисторов.

Схема запитки для IR2153

Даже если их ставить от переменки, выделяется очень много тепла. Чтобы этого избежать, вместо резистора используем конденсатор. Это предотвратит нагрев элемента по питанию.

Место расположения конденсатора

Также плата оснащена защитой, но в первоначальном варианте схемы ее не было.

Защита на схеме блока питания

Установка нового элемента на плату блока питания

Обратная сторона печатной платы для БП

После тестов на макете выяснилось, что для установки трансформатора слишком мало места и поэтому схему пришлось увеличить на 1 см, это дало лишнее пространство, на которое нужно установить защиту. Если она не нужна, можно просто поставить перемычки вместо шунта и не устанавливать компоненты, отмеченные красным цветом.

Расположение перемычки на схеме

Компоненты на плате, которые не нужно устанавливать

Ток защиты регулируется с помощью подстроечного резистора:

Подстроечный резистор на схеме

Номиналы резисторов шунта изменяются в зависимости от максимальной выходной мощности. Чем она больше, тем меньше нужно сопротивление. Например, для мощности до 150 Вт нужны резисторы на 0,3 Ом. Если мощность 300 Вт, то лучше использовать резисторы на 0,2 Ом. При 500 Вт и выше ставим резисторы с сопротивлением 0,1 Ом. Данный блок не стоит собирать мощностью выше 600 Вт.

Также нужно сказать пару слов про работу защиты. Она тут икающая. Частота запусков составляет 50 Гц. Это происходит потому, что питание взято от переменки, следовательно, сброс защелки происходит с частотой сети.

Принцип работы защиты отображён на схеме

Если вам нужен защелкивающийся вариант, то в таком случае питание микросхемы IR2153 нужно брать постоянное, а точнее — от высоковольтных конденсаторов. Выходное напряжение данной схемы будет сниматься с двухполупериодного выпрямителя.

Питание защелкивающегося варианта защиты

Основным диодом будет диод Шоттки в корпусе ТО-247, ток выбираете под ваш трансформатор.

Диод Шоттки в руках

Если нет желания брать большой корпус, то в программе Layout его легко поменять на ТО-220. По выходу стоит конденсатор на 1000 мкФ, его с головой хватает для любых токов, так как при больших частотах емкость можно ставить меньше чем для 50-ти герцового выпрямителя.

Расположение выходного конденсатора на 1000 мкФ

Как выглядит выходной конденсатор на 1000 мкФ

Также необходимо отметить и использование некоторых вспомогательных элементов в обвязке трансформатора:

Кроме того, не забываем об Y-конденсаторе между землями высокой и низкой стороны, который гасит помехи на выходной обмотке блока питания.

Нельзя пропускать и частотозадающую часть схемы.

Это конденсатор на 1 нФ, его номинал автор не советует менять, а вот резистор задающей части он поставил подстроечный, на это были свои причины. Первая из них, это точный подбор нужного резистора, а вторая — это небольшая корректировка выходного напряжения с помощью частоты. А сейчас небольшой пример, допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26В, а вам нужно 24В. Меняя частоту можно найти такое значение, при котором на выходе будут требуемые 24В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и вращая ручку резистора, добиваемся нужного сопротивления.

Читайте также:  Места для размещения блоков питания трансформаторов

Резистор на схеме

Это конденсатор на 1 нФ, его номинал менять не советуем, а вот резистор задающей части можно установить подстроечный, на это есть свои причины. Первая из них — это точный подбор нужного резистора, а вторая — это небольшая корректировка выходного напряжения с помощью частоты.

Небольшой пример: допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26 В, а вам нужно 24 В. Меняя частоту, можно найти такое значение, при котором на выходе будут требуемые 24 В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и, вращая ручку резистора, добиваемся нужного сопротивления.

Расположение резистора с нужным сопротивлением

Установка нужного сопротивления на резисторе

Печатную плату для импульсного блока питания на IR2153 можно скачать ниже:

Импульсный блок питания на IR2153 — сборка своими руками

Сейчас вы можете видеть 2 макетные платы, на которых производились испытания. Они очень похожи, но плата с защитой немного больше.

Макетные платы в руках

Макетки сделаны для того, чтобы можно было заказать изготовление данной платы в Китае.

Демонстрация обратной стороны печатной платы

Технические компоненты на лицевой стороне платы

Тыльная сторона платы для импульсного блока питания

Вот плата уже готова. Выглядит все таким образом. Сейчас быстренько пройдемся по основным элементам ранее не упомянутым. В первую очередь это предохранители. Их тут 2, по высокой и низкой стороне.

Указание на предохранители

Предохранитель зажат двумя пальцами

Далее видим конденсаторы фильтра.

Указание на конденсаторы фильтра

Их можно достать из старого блока питания компьютера. Дроссель наматываем на кольце т-9052, 10 витков проводом сечением 0,8 мм 2 жилы. Однако можно применить дроссель из того же компьютерного блока питания. Диодный мост — любой, с током не меньше 10 А.

Диодный мост в руке

Еще на плате имеются 2 резистора для разрядки емкости, один по высокой стороне, другой — по низкой.

Указание на резистор для разрядки ёмкости

Второй резистор для разрядки ёмкости

Ну и остается дроссель по низкой стороне, его мотаем 8–10 витков на таком же сердечнике, что и сетевой. Как видим, данная плата рассчитана под тороидальные сердечники, так как они при одинаковых размерах с Ш-образными, имеют большую габаритную мощность.

Дроссель для платы

Тестирование самодельного импульсного блока питания на IR2153

Настало время протестировать устройство. Пока основным советом является производить первое включение через лампочку на 40 Вт.

Простая схема тестирования блока питания

Лампочка подключена к блоку питания

Если все работает в штатном режиме, то лампу можно откинуть. Проверяем схему на работу. Как видим, выходное напряжение присутствует. Проверим как реагирует защита. Скрестив пальцы и закрыв глаза, коротим выводы вторички.

Искусственное создание короткого замыкания на блоке питания

Как видим, защита сработала, все хорошо. Теперь можно сильнее нагрузить блок. Для этого воспользуемся нашей электронной нагрузкой. Подключим 2 мультиметра, чтоб мониторить ток и напряжение. Начинаем плавно поднимать ток.

Блок питания подключён к 2-м мультиметрам

Результат тестирования БП на 2-х Амперах

Как видим при нагрузке в 2А, напряжение просело незначительно. Если поставить мощнее трансформатор, то просадка уменьшится, но все равно будет, так как этот блок не имеет обратной связи, поэтому его предпочтительнее использовать для менее капризных схем.

  • Смотрите также, как создать 6-вольтный БП на BQ24450

Итак, где использовать универсальный импульсный блок питания на IR2153? В блоках для DC-DC, для усилителей, паяльников, ламп, двигателей.

Видео о создании импульсного блока питания на IR2153 своими руками:

Источник