Меню

Мосфет для зарядного устройства



Зарядное устройство для батареи конденсаторов на основе последовательной цепочки MOSFET

IXTQ10P50P

В этой статье описан простой, проверенный и надежный метод заряда батарей конденсаторов большой емкости, использующий последовательное соединение нескольких MOSFET, чтобы увеличить общее напряжение пробоя по сравнению с напряжением пробоя отдельного транзистора.

Когда к источнику питания подключена большая емкостная нагрузка, начальный бросок тока, если его не ограничить, при высоком напряжении источника может достигать десятков и сотен ампер. В типичном случае предельно допустимые режимы источника питания могут быть кратковременно превышены во много раз, но, как правило, это допустимо, если переходный процесс длится не более нескольких циклов сетевого переменного напряжения. Обычно это справедливо для емкостей нагрузки, не превышающих нескольких сотен микрофарад, но если к источнику подключены тысячи микрофарад, потребуется ограничитель пускового тока.

В качестве такого ограничителя очень удобно использовать управляемый токовый элемент на основе MOSFET. Рассмотрим хотя бы такой пример. Допустим, поставлена задача заряда батареи конденсаторов током 1 А от выпрямленного сетевого напряжения 240 В. Для схемы на одном P-канальном MOSFET потребовался бы прибор, способный пропускать ток 1 А при напряжении сток-исток (|VDS|) порядка 330 В, что превышает область безопасной работы большинства транзисторов. Например, транзистор IXTQ10P50P при максимальной температуре перехода 150 °C и |VDS| = 250 В может управлять током 200 мА, но если |VDS| Расчет емкости C1

C1 разряжается со скоростью dV/dt = I/C = 10 В/мс. Это почти на порядок медленнее, чем скорость изменения входного синусоидального напряжения при частоте полуциклов 120 Гц, спадающего от 300 В до 0 В за 4.17 мс. По этой причине с момента, когда входное напряжение достигает максимального значения VMAX, и до тех пор, пока входное напряжение не превысит напряжение VC1 на C1 в процессе нарастания полуволны 120 Гц, батарея конденсаторов заряжается только от C1. Поскольку C1 разряжается постоянным током 1 А, длительность tD интервала его разряда можно вычислить по формуле

В этом временнóм интервале входное напряжение изменяется от 330 В до нуля и нарастает до VC1:

Решая эти два уравнения относительно VC1, находим, что C1 разряжается примерно до 265 В. Из того, что падение напряжения на трех MOSFET составляет приблизительно 15 В, следует, что после 250 В напряжение на батарее конденсаторов увеличиваться линейно не может. Это объясняет отклонение зависимости от линейной, изображенной на Рисунке 2 пунктирной линией.

Описанная схема является лишь частью сложного устройства – изготовленного нами дефибриллятора для научных исследований [1]. В течение последних двух лет она подтвердила свою надежность сотнями циклов заряда и сотнями часов работы с быстрыми разрядами батареи конденсаторов. Схема испытывалась при входном напряжении 280 В с.к.з., и надежно работала при температуре теплоотвода, достигавшей 70 °C. Область использования предложенной схемы, разумеется, не ограничивается лишь теми напряжениями и токами, которые указаны в статье. Максимальное входное напряжение и зарядный ток могут быть увеличены удлинением цепочки P- канальных MOSFET. Недостатком схемы является падение напряжения на каждом MOSFET, составляющее примерно 5 В. Увеличение емкости конденсатора C1 свыше 100 мкФ делает зарядную кривую более линейной в области еще бóльших напряжений. И, конечно же, входное напряжение может быть постоянным.

Ссылки

  1. Uzelac I, Holcomb M, Reiserer RS, Fenton FH, Wikswo JP, High-Power Current Source with Real-Time Arbitrary Waveform for In Vivo and In Vitro Studies of Defibrillation, Computing in Cardiology, 40:667-670, 2013

Перевод: AlexAAN по заказу РадиоЛоцман

Источник

Автоматическое зарядное устройство

Зарядное устройство представляет собой параметрический стабилизатор напряжением 14,2 В с регулирующим элементом на полевом транзисторе. Цепь затвора мощного полевого транзистора VT1 питается от отдельного источника напряжением 30 В.

Для получения выходного напряжения 14,2 В необходимо подать на затвор транзистора VT1 стабилизированное напряжение около 18 В, поскольку напряжение отсечки полевого транзистора IRFZ48N достигает 4 В. Напряжение на затворе формирует параллельный стабилизатор DA1, питаемый через резистор R2 от источника напряжением 30 В. Стабистор VD3 введен для компенсации изменения ЭДС полностью заряженной батареи при изменении внешней температуры.

Если к зарядного устройству подключить разряженную аккумуляторную батарею (показатель глубоко разряженной батареи – ЭДС менее 11 В на ее выводах), то транзистор VT1 перейдет из активного режима стабилизации в полностью открытое состояние из-за большой разницы между напряжением на затворе и на истоке: 18 В – 11 В = 7 В, это на 3 В больше напряжения отсечки 7 В – 4 В = 3 В.

Этих трех вольт для открывания транзистора VT1 вполне достаточно. Сопротивление открытого канала этого транзистора станет пренебрежимо мало. Поэтому зарядный ток будет ограничен только резистором R3 и станет равным:

Это расчетное значение тока. Практически же он не превысит 10 А по причине падения напряжения на вторичной обмотке трансформатора и на диодах моста VD2, при этом ток будет пульсировать с удвоенной сетевой частотой. Если зарядный ток все же превысит рекомендованное значение (0,1 от емкости батареи), то он не повредит аккумуляторную батарею, поскольку вскоре начнет быстро спадать По мере приближения напряжения батареи к напряжению стабилизации 14,2 В ток зарядки будет уменьшаться, пока не прекратиться вовсе. В таком состоянии устройство может находиться долгое время без риска перезарядить батарею.

Читайте также:  Обзор Honor 20 Pro мощный камерофон который хотел стать максимально бюджетным

Лампа HL1 индицирует включение устройства в сеть, а HL2 сигнализирует, во-первых, об исправности предохранителя FU2 и, во-вторых, о подключении заряжаемой батареи. Кроме того, лампа HL2 служит небольшой нагрузкой, облегчающей точную установку выходного напряжения.

В устройстве необходимо применить сетевой трансформатор габаритной мощностью не менее 150 Вт. Обмотка II должна обеспечивать напряжение 17…20 В при токе нагрузки 10 А, а обмотка III – 5…7 В при 50…100 мА. Транзистор IRFZ48N можно заменить на IRFZ46N. Если устройство применять для зарядки аккумуляторных батарей емкостью не более 55 А*ч, ир подойдет транзистор IRFZ44N ( или отечественный КП812А1 ).

Выпрямительный мост GBPC15005 заменим четырьмя диодами Д242А, Д243А или подобными. Вместо КД243А можно применить диод КД102А или КД103А. Резистор R3 изготавливают из нихромовой проволоки диаметром не менее 1 мм. Ее наматывают на керамический стержень, а каждый из выводов зажимают под винт М4 с гайкой и лепестком для пайки. Монтировать резистор следует так, чтобы ничто не препятствовало его естественному охлаждению потоком воздуха.

Стабистор КС119А заменят четыре диода КД522А, соединенных последовательно. Вмесло TL431 подойдет его отечественный аналог КР142ЕН19А. Резистор R6 Следует выбрать из серии СП5.

Транзистор VT1 необходимо установить на теплоотвод с полезной площадью 100…150 см?. Тепловая мощность в процессе зарядки будет распределяться между транзистором и резистором R3 следующим образом: в начальный момент, когда транзистор открыт, вся тепловая мощность будет выделяться на резисторе R3; к середине зарядного цикла мощность распределится между ними поровну, и для транзистора это будет максимум нагревания (20…25 Вт), а к концу зарядный ток уменьшится настолько, что и резистор, и транзистор останутся холодными.

После сборки устройства необходимо только до подключения аккумуляторной батареи подстроечным резистором R6 установить на выходе пороговое напряжение 14.2 В.

Источник

Мосфет для зарядного устройства

Зарядное устройство представляет собой параметрический стабилизатор напряжением 14,2 В с регулирующим элементом на полевом транзисторе. Цепь затвора мощного полевого транзистора VT1 питается от отдельного источника напряжением 30 В.

Для получения выходного напряжения 14,2 В необходимо подать на затвор транзистора VT1 стабилизированное напряжение около 18 В, поскольку напряжение отсечки полевого транзистора IRFZ48N достигает 4 В. Напряжение на затворе формирует параллельный стабилизатор DA1, питаемый через резистор R2 от источника напряжением 30 В. Стабистор VD3 введен для компенсации изменения ЭДС полностью заряженной батареи при изменении внешней температуры.

Если к зарядного устройству подключить разряженную аккумуляторную батарею (показатель глубоко разряженной батареи – ЭДС менее 11 В на ее выводах), то транзистор VT1 перейдет из активного режима стабилизации в полностью открытое состояние из-за большой разницы между напряжением на затворе и на истоке: 18 В – 11 В = 7 В, это на 3 В больше напряжения отсечки 7 В – 4 В = 3 В.

Этих трех вольт для открывания транзистора VT1 вполне достаточно. Сопротивление открытого канала этого транзистора станет пренебрежимо мало. Поэтому зарядный ток будет ограничен только резистором R3 и станет равным:

Это расчетное значение тока. Практически же он не превысит 10 А по причине падения напряжения на вторичной обмотке трансформатора и на диодах моста VD2, при этом ток будет пульсировать с удвоенной сетевой частотой. Если зарядный ток все же превысит рекомендованное значение (0,1 от емкости батареи), то он не повредит аккумуляторную батарею, поскольку вскоре начнет быстро спадать По мере приближения напряжения батареи к напряжению стабилизации 14,2 В ток зарядки будет уменьшаться, пока не прекратиться вовсе. В таком состоянии устройство может находиться долгое время без риска перезарядить батарею.

Лампа HL1 индицирует включение устройства в сеть, а HL2 сигнализирует, во-первых, об исправности предохранителя FU2 и, во-вторых, о подключении заряжаемой батареи. Кроме того, лампа HL2 служит небольшой нагрузкой, облегчающей точную установку выходного напряжения.

В устройстве необходимо применить сетевой трансформатор габаритной мощностью не менее 150 Вт. Обмотка II должна обеспечивать напряжение 17…20 В при токе нагрузки 10 А, а обмотка III – 5…7 В при 50…100 мА. Транзистор IRFZ48N можно заменить на IRFZ46N. Если устройство применять для зарядки аккумуляторных батарей емкостью не более 55 А*ч, ир подойдет транзистор IRFZ44N ( или отечественный КП812А1 ).

Выпрямительный мост GBPC15005 заменим четырьмя диодами Д242А, Д243А или подобными. Вместо КД243А можно применить диод КД102А или КД103А. Резистор R3 изготавливают из нихромовой проволоки диаметром не менее 1 мм. Ее наматывают на керамический стержень, а каждый из выводов зажимают под винт М4 с гайкой и лепестком для пайки. Монтировать резистор следует так, чтобы ничто не препятствовало его естественному охлаждению потоком воздуха.

Стабистор КС119А заменят четыре диода КД522А, соединенных последовательно. Вмесло TL431 подойдет его отечественный аналог КР142ЕН19А. Резистор R6 Следует выбрать из серии СП5.

Транзистор VT1 необходимо установить на теплоотвод с полезной площадью 100…150 см?. Тепловая мощность в процессе зарядки будет распределяться между транзистором и резистором R3 следующим образом: в начальный момент, когда транзистор открыт, вся тепловая мощность будет выделяться на резисторе R3; к середине зарядного цикла мощность распределится между ними поровну, и для транзистора это будет максимум нагревания (20…25 Вт), а к концу зарядный ток уменьшится настолько, что и резистор, и транзистор останутся холодными.

Читайте также:  Магазин русь автомобильные зарядные устройства

После сборки устройства необходимо только до подключения аккумуляторной батареи подстроечным резистором R6 установить на выходе пороговое напряжение 14.2 В.

Источник

Практические схемы универсальных зарядных устройств для аккумуляторов

Предлагаемые ниже схемы ЗУ были разработаны для зарядки литий-ионных аккумуляторов, но существует возможность зарядки и других типов аккумуляторов и составных батарей (с применением однотипных элементов, далее — АБ).

Все представленные схемы имеют следующие основные параметры:
• входное напряжение 15-24 В;
• ток заряда (регулируемый) до 4 А;
• выходное напряжение (регулируемое) 0,7 — 18 В (при Uвх=19В).

Все схемы были ориентированы на работу с блоками питания от ноутбуков либо на работу с другими БП с выходными напряжениями постоянного тока от 15 до 24 Вольт и построены на широко распространенных компонентах, которые присутствуют на платах старых компьютерных БП, БП прочих устройств, ноутбуков и пр.

Схема ЗУ № 1 (TL494)

ЗУ на схеме 1 является мощным генератором импульсов, работающим в диапазоне от десятков до пары тысяч герц (частота варьировалась при исследованиях), с регулируемой шириной импульсов.
Зарядка АБ производится импульсами тока, ограниченного обратной связью, образованной датчиком тока R10, включенным между общим проводом схемы и истоком ключа на полевом транзисторе VT2 (IRF3205), фильтром R9C2, выводом 1, являющимся «прямым» входом одного из усилителей ошибки микросхемы TL494.

На инверсный вход (вывод 2) этого же усилителя ошибки подается регулируемое посредством переменного резистора PR1, напряжение сравнения с встроенного в микросхему источника опорного напряжения (ИОН — вывод 14), меняющего разность потенциалов между входами усилителя ошибки.
Как только величина напряжения на R10 превысит значение напряжения (установленного переменным резистором PR1) на выводе 2 микросхемы TL494, зарядный импульс тока будет прерван и возобновлен вновь лишь при следующем такте импульсной последовательности, вырабатываемой генератором микросхемы.
Регулируя таким образом ширину импульсов на затворе транзистора VT2, управляем током зарядки АБ.

Транзистор VT1, включенный параллельно затвору мощного ключа, обеспечивает необходимую скорость разрядки затворной емкости последнего, предотвращая «плавное» запирание VT2. При этом амплитуда выходного напряжения при отсутствии АБ (или прочей нагрузки) практически равна входному напряжению питания.

При активной нагрузке выходное напряжение будет определяться током через нагрузку (её сопротивлением), что позволит использовать эту схему в качестве драйвера тока.

При заряде АБ напряжение на выходе ключа (а, значит, и на самой АБ) в течении времени будет стремиться в росте к величине, определяемой входным напряжением (теоретически) и этого, конечно, допустить нельзя, зная, что величина напряжения заряжаемого литиевого аккумулятора должна быть ограничена на уровне 4,1 В (4,2 В). Поэтому в ЗУ применена схема порогового устройства, представляющего из себя триггер Шмитта (здесь и далее — ТШ) на ОУ КР140УД608 (IC1) или на любом другом ОУ.

При достижении необходимого значения напряжения на АБ, при котором потенциалы на прямом и инверсном входах (выводы 3, 2 — соответственно) IC1 сравняются, на выходе ОУ появится высокий логический уровень (практически равный входному напряжению), заставив зажечься светодиод индикации окончания зарядки HL2 и светодиод оптрона VH1 который откроет собственный транзистор, блокирующий подачу импульсов на выход U1. Ключ на VT2 закроется, заряд АБ прекратится.

По окончании заряда АБ он начнет разряжаться через встроенный в VT2 обратный диод, который окажется прямовключенным по отношению к АБ и ток разряда составит приблизительно 15-25 мА с учетом разряда кроме того через элементы схемы ТШ. Если это обстоятельство кому-то покажется критичным, в разрыв между стоком и отрицательным выводом АБ следует поставить мощный диод (лучше с малым прямым падением напряжения).

Гистерезис ТШ в этом варианте ЗУ выбран таким, что заряд вновь начнется при понижении величины напряжения на АБ до 3,9 В.

Это ЗУ можно использовать и для заряда последовательно соединенных литиевых (и не только) АБ. Достаточно откалибровать с помощью переменного резистора PR3 необходимый порог срабатывания.
Так, например, ЗУ, собранный по схеме 1, функционирует с трехсекционной последовательной АБ от ноутбука, состоящей из сдвоенных элементов, которая была смонтирована взамен никель-кадмиевой АБ шуруповерта.
БП от ноутбука (19В/4,7А) подключен к ЗУ, собранному в штатном корпусе ЗУ шуруповерта взамен оригинальной схемы. Зарядный ток «новой» АБ составляет 2 А. При этом транзистор VT2, работая без радиатора нагревается до температуры 40-42 С в максимуме.
ЗУ отключается, естественно, при достижении напряжения на АБ=12,3В.

Гистерезис ТШ при изменении порога срабатывания остается прежним в ПРОЦЕНТНОМ отношении. Т.е., если при напряжении отключения 4,1 В, повторное включение ЗУ происходило при снижении напряжения 3,9 В, то в данном случае повторное включение ЗУ происходит при снижении напряжения на АБ до 11,7 В. Но при необходимости глубину гистерезиса можно изменить.

Калибровка порога и гистерезиса зарядного устройства

Калибровка происходит при использовании внешнего регулятора напряжения (лабораторного БП).
Выставляется верхний порог срабатывания ТШ.
1. Отсоединяем верхний вывод PR3 от схемы ЗУ.
2. Подключаем «минус» лабораторного БП (далее везде ЛБП) к минусовой клемме для АБ (самой АБ в схеме во время настройки быть не должно), «плюс» ЛБП — к плюсовой клемме для АБ.
3. Включаем ЗУ и ЛБП и выставляем необходимое напряжение (12,3 В, например).
4. Если горит индикация окончания заряда, вращаем движок PR3 вниз (по схеме) до гашения индикации (HL2).
5. Медленно вращаем движок PR3 вверх (по схеме) до зажигания индикации.
6. Медленно снижаем уровень напряжения на выходе ЛБП и отслеживаем значение, при котором индикация вновь погаснет.
7. Проверяем уровень срабатывания верхнего порога еще раз. Хорошо. Можно настроить гистерезис, если не устроил уровень напряжения, включающий ЗУ.
8. Если гистерезис слишком глубок (включение ЗУ происходит при слишком низком уровне напряжения — ниже, например, уровня разряда АБ, выкручиваем движок PR4 влево (по схеме) или наоборот, — при недостаточной глубине гистерезиса, — вправо (по схеме). При изменении глубины гистерезиса уровень порога может сместиться на пару десятых долей вольта.
9. Сделайте контрольный прогон, поднимая и опуская уровень напряжения на выходе ЛБП.

Читайте также:  Одно зарядное устройство для всех видов телефона

Настройка токового режима еще проще.
1. Отключаем пороговое устройство любыми доступными (но безопасными) способами: например, «посадив» движок PR3 на общий провод устройства или «закорачивая» светодиод оптрона.
2. Вместо АБ подключаем к выходу ЗУ нагрузку в виде 12-вольтовой лампочки (например, я использовал для настройки пару 12V ламп на 20 Вт).
3. Амперметр включаем в разрыв любого из проводов питания на входе ЗУ.
4. Устанавливаем на минимум движок PR1 (максимально влево по схеме).
5. Включаем ЗУ. Плавно вращаем ручку регулировки PR1 в сторону роста тока до получения необходимого значения.
Можете попробовать поменять сопротивление нагрузки в сторону меньших значений ее сопротивления, присоединив параллельно, скажем, ещё одну такую же лампу или даже «закоротить» выход ЗУ. Ток при этом не должен измениться значительно.

В процессе испытаний устройства выяснилось, что частоты в диапазоне 100-700 Гц оказались оптимальными для этой схемы при условии использования IRF3205, IRF3710 (минимальный нагрев). Так как TL494 используется неполно в этой схеме, свободный усилитель ошибки микросхемы можно использовать, например, для работы с датчиком температуры.

Следует иметь в виду и то, что при неправильной компоновке даже правильно собранное импульсное устройство будет работать некорректно. Поэтому не следует пренебрегать опытом сборки силовых импульсных устройств, описанном в литературе неоднократно, а именно: все одноименные «силовые» соединения следует располагать на кратчайшем расстоянии относительно друг друга (в идеале — в одной точке). Так, например, точки соединения такие, как коллектор VT1, выводы резисторов R6, R10 (точки соединения с общим проводом схемы), вывод 7 U1 — следует объединить практически в одной точке либо посредством прямого короткого и широкого проводника (шины). То же касается и стока VT2, вывод которого следует «повесить» непосредственно на клемму «-» АБ. Выводы IC1 также должны находиться в непосредственной «электрической» близости к клеммам АБ.

Схема ЗУ № 2 (TL494)

Схема 2 не сильно отличается от схемы 1, но если предыдущая версия ЗУ была придумана для работы с АБ шуруповерта, то ЗУ на схеме 2 задумывалось, как универсальное, малогабаритное (без лишних элементов настройки), рассчитанное для работы как с составными, последовательно включенными элементами числом до 3-х, так и с одиночными.

Как видно, для быстрой смены токового режима и работы с разным количеством последовательно соединенных элементов, введены фиксированные настройки с подстроечными резисторами PR1-PR3 (установка тока), PR5-PR7 (установка порога окончания зарядки для разного количества элементов) и переключателей SA1 (выбор тока зарядки) и SA2 (выбор количества заряжаемых элементов АБ).
Переключатели имеют по два направления, где вторые их секции переключают светодиоды индикации выбора режима.

Ещё одно отличие от предыдущего устройства — использование второго усилителя ошибки TL494 в качестве порогового элемента (включенного по схеме ТШ), определяющего окончание зарядки АБ.

Ну, и, конечно, в качестве ключа использован транзистор р-проводимости, что упростило полное использование TL494 без применения дополнительных компонентов.

Методика настройки порогов окончания зарядки и токовых режимов такая же, как и для настройки предыдущей версии ЗУ. Разумеется, для разного количества элементов, порог срабатывания будет меняться кратно.

При испытании этой схемы был замечен более сильный нагрев ключа на транзисторе VT2 (при макетировании использую транзисторы без радиатора). По этой причине следует использовать другой транзистор (которого у меня просто не оказалось) соответствующей проводимости, но с лучшими токовыми параметрами и меньшим сопротивлением открытого канала, либо удвоить количество указанных в схеме транзисторов, включив их параллельно с раздельными затворными резисторами.

Использование указанных транзисторов (в «одиночном» варианте) не критично в большинстве случаев, но в данном случае размещение компонентов устройства планируется в малогабаритном корпусе с использованием радиаторов малого размера или вовсе без радиаторов.

Схема ЗУ № 3 (TL494)

В ЗУ на схеме 3 добавлено автоматическое отключение АБ от ЗУ с переключением на нагрузку. Это удобно для проверки и исследования неизвестных АБ. Гистерезис ТШ для работы с разрядом АБ следует увеличить до нижнего порога (на включение ЗУ), равного полному разряду АБ (2,8-3,0 В).

Источник