Меню

Литий железо полимерный аккумулятор



LiFePO4 аккумуляторы — особенности эксплуатации

LiFePO4 аккумуляторы - особенности эксплуатации

Статья обновлена: 2021-04-05

Аккумулятор 32650 LiFePO4 3,2В 5000мА*ч фото

Для питания электрического транспорта, электронного оборудования, электроприборов и автономно работающей техники используются аккумуляторы с разным химическим составом. Производители создают источники питания с усовершенствованными характеристиками, среди которых отлично зарекомендовали себя литий-железо-фосфатные элементы. Технология их производства получила развитие в 2003 году, и с тех пор LiFePO4 аккумуляторы остаются лучшими по многим параметрам.

Плюсы и минусы литий-железо-фосфатных аккумуляторов

В таких источниках питания в роли материала катода применяется литий-фосфат железа. Анод производится из углерода, как и у остальных литиевых элементов. По сравнению с аналогами LFP аккумуляторы имеют превосходную химическую и термическую стабильность. Они:

  • максимально безопасны в использовании – не возгораются и не взрываются, даже если разгерметизируются;
  • практически не выделяют токсинов, что облегчает их утилизацию;
  • более устойчивы к перезарядке, коротким замыканиям и другим аварийным ситуациям;
  • не склонны к лавинообразному разрушению в случае перегрева;
  • без критических последствий выдерживают пиковый разрядный ток до 25С;
  • выдерживают длительное воздействие высокого напряжения;
  • долговечны – срок службы LFP аккумуляторов составляет минимум 2000 рабочих циклов со снижением исходной емкости на 20%;
  • подходят для использования в оборудовании с высокими токовыми нагрузками;
  • имеют низкий саморазряд;
  • морозоустойчивы;
  • стабильно работают при температуре от -30 до +50 °С;
  • не имеют выраженного эффекта памяти;
  • при разряде имеют стабильное напряжение;
  • по плотности энергии на 14% уступают остальным Li-ion аккумуляторам;
  • допускают быструю зарядку высокими токами;
  • менее подвержены эффекту старения – естественное снижение емкости у LFP ячеек составляет всего 1,5% в год, в то время как у остальных Li-ion элементов старение наблюдается на 10% в год.

К недостаткам LiFePO4 АКБ относят их низкое номинальное напряжение (в диапазоне 3–3,3 В), меньшую энергоемкость и чувствительность к прямому воздействию влаги. При взаимодействии с водой происходит потеря активного лития, и снижается плотность энергии.

Принцип работы LFP аккумуляторов

В аккумуляторах протекают реакции, основанные на взаимодействии литий-феррофосфата как материала катода и углерода в качестве материала анода: LiFePO4 + 6C → Li1-xFePO4 + LiC6. Заряд переносят ионы лития. При разряде элемента питания они внедряются в кристаллическую структуру анода и отдают накопленный заряд, в результате чего протекают процессы окисления. При заряде источника питания ионы лития перемещаются от анода к катоду и накапливают заряд – происходит процесс восстановления.

График разряда LiFePO4

Для LFP аккумуляторов характерны плоские кривые разряда и заряда. Характерная кривая разряда LiFePO4 элементов имеет значительный участок с очень медленным изменением напряжения. К тому же, она имеет гистерезис. Эти особенности усложняют точный замер уровня заряда ячеек (SOC). Решить проблемы с точностью измерений уровня заряда позволяет алгоритм, базирующийся на оценке напряжения с применением способа интегрирования токов. Похожую кривую разряда-заряда имеют накопители энергии с типом химии LiCoPO4, LiFeSO4F, LiMnPO4.

Технические характеристики

Аккумуляторы типа LiFePO4 имеют:

  • номинальное напряжение 3–3,3 В;
  • граничные значения напряжения – 2 В и 3,65 В (у некоторых моделей – 2 В и 3,9 В);
  • напряжение под нагрузкой, минимум – 2,8 В;
  • напряжение в средней точке 3,3 В;
  • емкость – от 2500 до 6000 мАч и выше, в зависимости от размеров ячейки;
  • ресурс – более 2000 циклов;
  • удельную мощность – 90–120 Вт·ч/кг;
  • типичный ток заряда – 1С, в течение 3 часов повышает заряд до напряжения 3,65 В;
  • саморазряд – до 5% в год.

При соединении ячеек в аккумуляторные батареи достигаются технические характеристики, необходимые для питания определенного прибора, оборудования или транспортного средства. В зависимости от количества и схемы соединения ячеек, параметры АКБ бывают разными: емкость батареи может достигать 2000 А*ч, напряжение обычно составляет 12, 24, 36, 48 или 72 В. Диапазон рабочих температур LiFePO4 батарей соответствует параметрам ячеек (от -30 до +50 °С), а ток заряда варьируется от 4 до 30 А.

Схема соединения литий-феррофосфатных аккумуляторов в сборке зависит от требуемых параметров емкости и напряжения. При последовательном соединении ячеек емкость не меняется, а напряжение – суммируется. При параллельном соединении «банок» напряжение не меняется, а емкость суммируется. Для стабильной работы АКБ используются BMS платы, защищающие источники питания от перезаряда, глубокого разряда и коротких замыканий.

Области применения

АКБ для поломоечной машины Cleanfix RA 800, 900 sauber фото

LFP аккумуляторы используются в разных сферах:

  • для питания электромоторов велосипедов, скутеров, мопедов, мотоциклов, электромобилей, квадроциклов и других транспортных средств на электротяге;
  • для оснащения электрических подъемников, пылесосов, штабелеров, погрузчиков, ричтраков, поломоечных машин, гольфкаров, газонокосилок и другой техники;
  • в качестве буферных накопителей энергии в системах альтернативной электроэнергии – при автономном электроснабжении с применением солнечных батарей и ветрогенераторов;
  • в составе домашних ИБП;
  • в качестве АКБ для катеров, лодок и других видов водного транспорта, оснащенных электромоторами;
  • для комплектации гибридных генераторов, метеостанций, игрового оборудования и других приборов.

Особенности зарядки

BMS плата защиты не допускает перезаряда АКБ, ее глубокого разряда и КЗ, а также выполняет балансировку элементов питания – выравнивает их напряжение. Но незащищенные аккумуляторы (без платы защиты) нельзя перезаряжать и разряжать ниже допустимого предела, иначе они деградируют и теряют работоспособность.

Если оставить разрядившиеся аккумуляторы без подзарядки, дальнейшее снижение напряжения в результате саморазряда негативно отразится на емкости и работоспособности источника питания. Зарядку нужно проводить при температуре корпуса, приближенной к комнатным значениям. Во избежание перегрева заряжаемую батарею и ЗУ нельзя чем-то накрывать.

Зарядное устройство для LiFePO4 аккумулятора 48V 5A, 16s, 58,4 Вольта пластиковый корпус фото

Процесс зарядки LFP аккумуляторов и батарей включает 2 этапа:

  1. Постоянным током до нужного напряжения.
  2. При постоянном напряжении до минимальной величины зарядного тока, по алгоритму CC/CV.

Для зарядки рекомендуется использовать «умные» зарядные устройства. Оптимальное напряжение заряда – 3,6–3,65 В на элемент. В результате обеспечивается напряжение до 3,4–3,45 В на каждый аккумулятор.

Правила хранения и утилизации

Перед длительным хранением LiFePO4 аккумуляторы нужно зарядить до уровня 40–60%, чтобы не допустить их значительного разряда и потери емкости. Хранить источники питания рекомендуется при температуре от +5 до +30 °С, в сухом месте, в стороне от источников тепла и прямых солнечных лучей.

Аккумуляторы, отработавшие свой ресурс, желательно сдать на переработку. В специальных пунктах переработки источники питания разбирают и в дальнейшем используют, например, для сборки блоков для хранения электроэнергии от солнечных батарей, ветряков и компактных гидроэлектростанций.

Источник

Особенности литий-железо-фосфатного аккумулятора

Перезаряжаемые литий-ионные аккумуляторы являются наиболее успешным типом батарей на рынке портативных устройств и быстро становятся важными для хранения энергии в транспортных средствах или домашних системах из-за присущих им преимуществ перед другими химическими источниками энергии.

Среди различных литий-ионных химических соединений литий-железо-фосфатный LiFePO4 аккумулятор считается особенно важным для будущих транспортных средств из-за его низкой стоимости, экологичности, стабильности и безопасности даже в агрессивных условиях.

Моделирование литий-ионных аккумуляторов шло в ногу с развитием различных химических элементов источников питания. Первая коммерческая литий-ионная батарея была представлена Sony в 1991 году, а первая основанная на физике модель литиевой батареи, использующая теорию пористых электродов, диффузию частиц и теорию концентрированных растворов, была разработана уже в 1993 году.

Литий-железо-фосфатный LiFePO 4 аккумулятор появился на рынке в 1997 году, когда он был показан в качестве жизнеспособного положительного электродного материала.

Литий-железо-фосфатный – это тип литий-ионного аккумулятора у которого энергия накапливается путем перемещения и накапливания ионов лития вместо металлического лития.

Литий-железо-фосфатные батареи считаются одними из самых долгоживущих источников питания, когда-либо разработанных. Данные испытания в лаборатории показывают до 2000 циклов заряда/разряда. Это связано с достаточно прочной кристаллической структурой фосфата железа, которая не разрушается при повторной упаковке и распаковке ионов лития во время зарядки и разрядки.

Параметры литий-железо-фосфатных аккумуляторов

Параметры литий-железо-фосфатных аккумуляторов отличаются от других химических источников энергии многоразового действия в лучшую сторону:

  • номинальное напряжение 3,2 вольта;
  • пиковое напряжение 3,65 вольта обратите внимание на наши новые данные о зависимости емкости от напряжения заряда;
  • абсолютное минимальное разрядное напряжение 2,0 вольта;
  • напряжение заряда 3,65 вольта 100% заряд;
  • при напряжении 3,5 вольт 95% заряда;
  • температура заряда 0°-40°C.

Инновации в литий-ионных аккумуляторах

Хотя литий-ионная полимерная батарея малой емкости, содержащая оксид кобальта лития (LiCoO 2) обеспечивает наилучшую массовую плотность энергии и объемную плотность энергии, эти источники очень дорогие и небезопасны для крупномасштабных литий-ионных батарей.

В последнее время литий-железо-фосфатный аккумулятор (LiFePO4) становится “лучшим выбором” материалов в коммерческих литий-ионных источниках питания для применения в больших емкостях и высоких мощностях, таких как ноутбуки, электроинструменты, инвалидные кресла, электронные велосипеды, электрические автомобили и электробусы.

Особенности LiFePO4

Обычная зарядка

Во время обычного процесса зарядки литий-железо-фосфатный аккумулятор лучше всего может быть полностью заряжен в два этапа:

  • применяется постоянный ток для достижения примерно 60% состояния заряда;
  • происходит, когда напряжение заряда установится на уровне 3,65 вольт на ячейку, что является максимальным пределом эффективного напряжения зарядки. Переход от постоянного тока к постоянному напряжению означает, что зарядный ток ограничен тем, что батарея будет принимать при этом напряжении, поэтому зарядный ток постепенно уменьшается, точно так же, как конденсатор, заряженный через нагрузку, достигнет конечного напряжения бесконечно приближаясь.
Читайте также:  Аккумулятор батарея усиленная A1494 A1618 для MacBook Pro Retina 15 Late 2013 Mid 2015 A1398

Если по времени, то этапу 1 (60%) требуется около одного часа, а этапу 2 (40% ) – еще два часа.

2. Быстрая “принудительная” зарядка

Поскольку перенапряжение может быть применено к батарее LiFePO 4 без разложения электролита, она может быть заряжена только одним шагом, чтобы достичь 95%, или заряжена, чтобы получить 100%. Это похоже на то, как свинцово-кислотные батареи безопасно заряжаются. Минимальное общее время зарядки составит около двух часов.

3. Большая способность перезарядки и безопасности работы

Если сравнивать с ранее разработанными литий-кобальтовыми аккумуляторами LiCoO2, то они имеют очень узкий допуск перезаряда. Около 0,1 вольт по сравнению с постоянством зарядного напряжения 4,2 В считая это наивысшим пределом напряжения. Непрерывная зарядка свыше 4,3 В может либо повредить работу литий-кобальтовой батареи, например срок службы цикла, либо привести к пожару или взрыву.

Батарея LiFePO 4 имеет гораздо более широкий допуск перезаряда около 0,7 В от своего постоянного зарядного напряжения 3,5 В на ячейку. При анализе с помощью измерителя теплоты химической реакции с электролитом после перезаряда выделение тепла составляет всего 90 джоулей/грамм для LiFePO4 против 1600 Дж/г для LiCoO 2.

Батарею LiFePO 4 можно безопасно перезарядить до 4,2 вольта на ячейку, но более высокие напряжения начнут разрушать органические электролиты. Тем не менее, обычно заряжают 12-вольтовый блок серии из 4-х аккумуляторов с помощью автомобильного зарядного устройства или от автомобильного генератора. Обычные свинцово-кислотные зарядные устройства снижают свое напряжение до 13,8 вольт после нормального заряда и обычно прекращают потреблять ток когда зарядка достигнет 100%. По этой причине для надежного выхода на 100% емкость требуется постоянное зарядное устройство.

С точки зрения большой переносимости перезаряда и безопасности работы батарея LiFePO4 похожа на свинцово-кислотную батарею.

4. Необходимость плат управления

В отличие от свинцово-кислотной батареи, ряд элементов LiFePO4 в батарейном блоке при последовательном соединении не могут уравновесить друг друга в процессе зарядки. Это происходит потому, что ток заряда перестает течь, когда ячейка заполнена. Вот почему пакеты из литий-железо-фосфатный аккумуляторов нуждаются в платах управления.

5. В три-четыре раза более высокая плотность энергии, чем свинцово-кислотная батарея

Свинцово-кислотный аккумулятор представляет собой водную систему. Напряжение одной ячейки номинально составляет 2 В во время разряда. Свинец-тяжелый металл, его удельная емкость составляет всего 44 Ач/кг. Для сравнения, литий-железофосфатная ячейка (LiFePO 4) представляет собой неводную систему, имеющую номинальное напряжение 3,2 в во время разряда. Его удельная мощность составляет более 145 Ач/кг. Гравиметрическая плотность энергии батареи LiFePO 4 составляет 130 Втч/кг, что в три-четыре раза выше, чем у свинцово-кислотной батареи, 35 Втч/кг.

6. Упрощенная система управления батареей и зарядное устройство

Большой допуск перезаряда и характеристика самобалансировки LiFePO 4 аккумулятора позволяют упростить защиту батареи и сбалансировать печатные платы, снизив их стоимость. Одноступенчатый процесс зарядки позволяет использовать более простой обычный источник питания для зарядки аккумулятора LiFePO 4 вместо использования дорогостоящего и сложного литий-ионного зарядного устройства.

7. Большее количество циклов заряд-разряд

По сравнению с кобальтовой батареей LiCoO 2, срок службы которой составляет 400 циклов, батарея LiFePO 4 продлевает свой срок службы до 2000 циклов.

8. Высокие температурные показатели

Вредно иметь батарею LiCoO 2, работающую при повышенной температуре, например 60°C. Однако батарея LiFePO 4 работает лучше при повышенной температуре, отдавая на 10% большую емкость из-за более высокой ионной проводимости лития.

Мировой рынок литий-ионных аккумуляторов продолжает расти, поскольку их плотность мощности и плотность энергии увеличиваются.

Кроме того, производственные возможности для крупноформатных ячеек и снижение себестоимости производства расширили области применения этой химии батарей. Литий-ионные аккумуляторы и их разновидность литий-железо-фосфатные аккумуляторы в настоящее время используются не только в потребительских товарах, таких как мобильные телефоны и ноутбуки, но и для транспортных средств и стационарных хранилищ.

Источник

Литий железо полимерный аккумулятор

Чтобы электронное оборудование работало без нареканий и как можно дольше, производители изобретают новые источники питания. Отдельное место занимают литий ферум фосфатные аккумуляторы. Такие АКБ безопаснее, малотоксичнее, долговечнее. К тому же, у них большая электроемкость, нежели чем у «коллег».

Что такое LiFePo4

Литий железо фосфатный аккумулятор – высокопроизводительное и надежное устройство. Отодвигает на второй план не только никелевые, но и литий-ионные батареи. Аккумуляторы на основе феррофосфатной начинки используются в промышленности, в последних моделях смартфонов и электровелосипедах.

Новая разновидность батареи изобретена в Технологическом Университете Массачусетса в 1996 году, в качестве альтернативы не только морально устаревшим железоникелевым, но и более свежим, но токсичным лиотехам.

В основе – модернизированная схема литиевых источников питания. Железофосфатные аккумуляторы используют в своем химическом составе феррум-фосфат лития взамен литий-кобальта. Японская корпорация А123 первая исследовала бустер, а Qualcomm и Motorola распознали преимущества нового продукта и способствовали его распространению на рынке.

Как создается LiFePo4

Вещества для изготовления литий феррофосфатных аккумуляторов поступают на производство в качестве порошка, цвета серого металлика. Технический процесс изготовления катодов и анодов идентичен, но в целях чистоты производственной схемы вынесен в разные цеха.

Создание железофосфатной батареи занимает несколько ступеней:

  1. Изготовление контактов. В процессе совокупность химических элементов покрывается металлической пленкой из меди или алюминия, в зависимости от предназначения. Металл покрывается тонким слоем токопроводящей суспензии. Сформированные катоды и аноды нарезаются на полосы, которые при сворачивании становятся ячейками.
  2. Компоновка. Готовые катоды и аноды размещают по бокам отсеивателя и фиксируются на нем. Конструкцию размещают в емкости из пластика, залитой электролитом и герметично закрывают.
  3. Проверка на заряд-разряд. Батарею заряжают, поэтапно наращивая напряжение подаваемого тока, во избежание детонации и самовоспламенения. Разряжают изделие подключив к прибору с большой энергопотребностью.
  4. Проверка внутреннего сопротивления и напряжения. Производится при помощи уравнения Нернста.
  5. Продукция, не получившая нареканий в Отделе Технического Контроля завода, отгружается покупателю.

Принципы устройства АКБ

В составе литий железофосфатных аккумуляторов присутствуют контакты вокруг сепаратора, подключенные к токосъемникам, окруженным электролитом и упакованный в герметичный контейнер. Контроллер, подключенный к емкости, отвечает за регулировку токоподачи в процессе восполнения энергии аккумуляторной батарейки.

Работа железо фосфатных АКБ основывается на гидроксиде калия литиевого железного фосфата. Заряд батареи несет ион лития с положительным зарядом. Ввиду специфических свойств он встраивается в атомарную решетку материала, создавая новую химическую связь.

Технические характеристики LFP

Свойства ячейки будут стабильно идентичны, вне зависимости от производства:

  • напряжение в пике – 3.65В;
  • среднее напряжение – 3.3В;
  • минимум – 2В;
  • рабочее напряжение – от 3 до 3.3 вольт;
  • удельная плотность: 320-498Дж/г;
  • объемная плотность: 790кДж/дм3;
  • заряд-разряд циклов для потери емкости: 7000;
  • Срок хранения без потери емкости: 15 лет;
  • Рабочий диапазон температуры: -30°C/+55°C

Технические характеристики каждого отдельного устройства варьируются исходя из используемого количества ячеек в аккумуляторе. Для электроавтомобиля потребуется аккумулятор с емкостью 20ah, напряжение которого 9.6в, а для электрического велосипеда такая же емкость батареи в 20а/ч выдаст уже 24в.

Ферум фосфатный элемент питания выпускается с различной емкостью: от 12в – для питания пульта управления «умным домом» или шуруповертом, до 72v – для питания лодочных электромоторов.

Изготавливаются они посредством поочередного соединения отсеков в связи с тем, что пиковые напряжения одной секции не будут более 3,65В. По этой причине, элементы с одинаковой емкостью количества ампер и напряжением, будут отличаться габаритами относительно применения в электромобиле или для бесперебойного питания системы оповещения.

Плюсы и минусы

LiFePO4 емкости – вершина творения инженеров в технологии строения аккумуляторов. По многим параметрам они превосходят многих своих конкурентов. Взяв от предшественников, использующих никель в составе, способность к стабильному напряжению при разрядке, он превзошел литий-ионные в долговечности, лишь немного уступив полимерным АКБ в энергоемкости.

  • полностью лишен «эффекта запоминания»;
  • долгий срок службы при правильной эксплуатации;
  • высокая удельная емкость;
  • диапазон рабочих температур;
  • не обслуживаемые;
  • возможна быстрая зарядка емкости до 100 % за 30 минут;
  • высокоэффективны;
  • экологически чистые.
  • габариты и масса внушительны;
  • обязательно следовать методике эксплуатации для сохранения свойств;
  • сложность при самостоятельной сборке.

Самым существенным недостатком является цена: по отзывам владельцев, аккумулятор на автомобиль может стоять на витрине с ценником в 26800 руб. Купить аналог из Китая не имеет большого смысла: на алиэкспресс стоимость стартует с 700 долларов.

Эксплуатация

Особенности использования

При покупке готовых изделий, трудностей с использованием возникнуть не должно.

Встроенный регулятор напряжения отслеживает емкостность и предупреждает как перезаряд, так и критический разряд.

В случае покупки отдельных ячеек, которыми являются батарейки для пульта или аудиоплейера, придется лично отслеживать эти параметры.

Как только заряд упадет ниже минимального значения, начнет страдать емкость самой батареи, которую уже не получится восполнить до прежних значений. Если допустить чрезмерный заряд – батарейка может вздуться.

Правила использования

При использовании LFP в качестве источника бесперебойного питания или в тандеме с солнечной батареей, стоит понизить заряд до 3.4В. Помочь в подобном деле смогут ЗУ с встроенным датчиком регулировки заряда.

Читайте также:  Как сбросить статистику аккумулятора iPhone

Необходимо отслеживать балансировку составляющих элементов АКБ во избежание разности напряжения в ячейках. Подобная асинхронность сильно уменьшает срок службы аккумулятора.

Перед началом использования

Перед началом использования LiFePO4, собранных посредством последовательного соединения ячеек, обязательно нужно балансировать систему для исключения разности заряда. Все составляющие требуется параллельно подключить к выпрямителю напряжения и зарядить до 3.6В.

Коэффициент полезности у LiFePO4-аккумуляторов на 30% больше, чем у батарей другого химического состава. Выдают стабильный ток и срок службы при грамотной эксплуатации даст фору другим источникам. Единственным фактором, мешающим его повсеместному использованию, становится цена, которая в несколько раз выше привычной.

Источник

На Токе заряженный портал

Всё о литий-железо-фосфатных (LiFePO4, LFP) аккумуляторах — На токе

  • Статьи об электротранспорте
  • Технологии
  • Аккумуляторы
  • Всё о литий-железо-фосфатных (LiFePO4, LFP) аккумуляторах

Всё о литий-железо-фосфатных (LiFePO4, LFP) аккумуляторах

Всё о литий-железо-фосфатных (LiFePO4, LFP) аккумуляторах

На рынке сегодня присутствует не малое количество разновидностей литиевых накопителей электроэнергии, и особое место среди них занимает литий-железо-фосфатное (LiFePO4 или LFP) исполнение. Чем оно выгодно отличается от «соплеменников» и каковы его особенности? Вот именно об этом мы будем говорить в данной теме.

Содержание:

  • История появления.
  • Преимущества LiFePO4 электронакопителей.
  • Сравнение LiFePO4 и Li-ion — что лучше?
  • Применение LFP аккумуляторов.
  • Как правильно эксплуатировать LFP батареи.
  • Правила хранения и утилизации LiFePo4.

История появления

john-goodenough-1200x675.jpg

Итак, LiFePO4 был открыт давненько, в 1996-ом году, профессором Техасского университета Джоном Гуденафом. Материал играл роль катода для обычного Li-ion накопителя. Отличался LFP тем, что по сравнению с традиционными литий-кобальтовыми источниками энергии, имел значительное преимущество в цене, был менее токсичным и более термоустойчивым. Однако у LiFePO4 имел место и один значимый недостаток — меньшая ёмкость.

57november.jpg

До 2003-го года разработка практически не продвигалась вперёд, пока она не попала в руки специалистов представляющих фирму A123 Systems. Кроме того, серьёзный толчок делу дали такие инвесторы как Motorola, Qualcomm и Sequoia Capital, благодаря которым технология была доведена до ума.

Первая промышленная партия изделий была выпущена в 2006-ом году и с тех пор, LFP позиционируются как лучшие из силовых электронакопителей.

LiFePO4 обходят конкурентов по таким параметрам:

1. Улучшенные характеристики.

2. Более высокий показатель КПД.

3. Повышенный уровень безопасности.

LiFePO4 предлагают пользователю более продолжительный срок службы, по сравнению со своими Li-ion собратьями. Применение фосфатов даёт возможность избежать расхода кобальта и связанных с этим экологических проблем.

Что мы имеем по техническим характеристикам LiFePO4?

Номинальное напряжение LFP — 3,0-3,3 V, нижний порог напряжения — 2 V. Полностью заряженный накопитель выдаёт 3,6-вольтовое напряжение. Аппаратура может функционировать в диапазоне -30. +60, что является весьма приемлемым результатом для сторонников круглогодичной эксплуатации индивидуального электрического транспорта.

Время зарядки LFP-батареи — 4 часа. Масса аккумулятора с характерстиками 36 V 12 Ah – 5,5 килограмма, разрядной ток — до 35 A, мощность — до 1260 Ватт, пиковая — 2160 Ватт.

Что нам предлагает ближайший конкурент LFP, традиционный Li-ion?

Номинальное напряжение тут уже повыше — 3,6-3,75 V. Нижний порог напряжения — 3 V, а для ёмких Li-ion АКБ нижний показатель — 2,5 V. Полностью заряженный агрегат выдаёт 4,25 V, у более ёмких батареек — 4,35 V. Работают при температуре -20. +60 градусов, но тут нужно учесть, что оптимальный температурный режим для литий-ионного источника энергии — +20. +25 градусов.

Время зарядки Li-ion батареи — 8 часов. Масса аккумулятора с характеристиками 36 V 12 Ah – 3 килограмма, разрядный ток — до 12 A, выдаваемая мощность — до 432 Ватт, пиковая — 864 Ватта.

Преимущества LiFePO4 электронакопителей

scat-i-battery-12-7-1.png

Скорее всего, вас не вдохновит показатель напряжения LiFePO4, но не стоит из-за этого сбрасывать данную разновидность литиевых источников питания со счетов. У них есть ряд преимуществ, которые могут заинтересовать очень многих юзеров.

1. В таких АКБ разработчики используют структуру оливина, высокотемпературного материала, который способен выдерживать температуру до 1900 градусов.

2. Продолжительный срок эксплуатации. Такая аппаратура может выдержать от двух до семи тысяч циклов. При этом, ёмкость снизится всего на 20%. А вот обычный литий-ион столько не потянет: его потенциал 500-1000 циклов разряда/заряда.

3. Срок хранения. По этому параметру LFP изделия также долгоиграющими являются. Хранить их можно 12-15 лет, а вот Li-ion — всего 3-5 лет, потом начинается деградация.

4. Повышенная плотность энергии и стойкость к низким температурным режимам. К примеру LiFePO4 модели ANR26650M1-B от A123 Systems, может работать при заявленном производителем температурном диапазоне -30. +55 градусов, а хранить её можно при -40. +60 градусах. У литий-ионной продукции просадки составляют порядка 3-4 V при нагрузке, а ёмкость снижается в два-три раза при минусовой температуре окружающей среды.

5. Устойчивость к переразряду. Если напряжение преодолеет допустимое значение, LFP грозят лишь несущественные повреждения, при которых девайс сохранит свою работоспособность. А вот Li-ion, при критическом уровне напряжения, становится весьма опасным предметом — происходит разгерметизация из-за которой в атмосферу выбрасывается литий. В этом случае вполне можно ожидать взрыва!

6. LFP не загораются при повреждении компонентов. Они в такой ситуации будут только нагреваться и испускать дым. Li-ion же при повреждении взрываются и могут напугать юзера появлением яркого пламени.

7. 3,2-вольтовое постоянное напряжение на выходе, даёт возможность соединить последовательно две пары аккумуляторов, для получения 12,8-вольтового номинального напряжения на выходе. Это приближено к напряжению свинцово-кислотных АКБ (SLA) с 6-ю ячейками. Данное обстоятельство, параллельно с достойной безопасностью источников питания LFP, делает их отличной возможной заменой SLA во многих отраслях. К примеру, автомобильная промышленность и солнечная энергетика. Тут возможно применение 3,2-вольтовых накопителей стандартного типоразмера 14500/10440, вместо пары гальванических элементов либо АКБ типоразмеров АА/ААА 1,5 V. Для это применяется один LFP электронакопитель, а на место второго компонента устанавливается вставка-проводник с идентичными размерами.

8. Если сравнивать LFP-батареи с другими литиевыми исполнениями, то они обладают довольно стабильным разрядным напряжением. На выходе напряжение остаётся близко к 3,2 V во время разряда, пока энергия аккумуляторной батареи не иссякнет на сто процентов. Это может существенно упростить корректировку напряжения в цепях или даже исключить надобность в ней.

9. LFP источники питания, обладают пониженной скоростью разряда, по сравнению с Li-ion и SLA электронакопителями.

10. LiFePO4 батареи можно встретить в формате 18650, что очень удобно. Это даёт возможность пользователям собрать источник питания практически любой формы, разместив компоненты наиболее удобным способом. Однако при одном и том же напряжении, LFP изделия будут несколько тяжелее и больше по размерам, поскольку в распоряжении ячеек разное номинальное напряжение.

11. Упрощённая система управления батареей и не сложное зарядное устройство. Большой допуск перезаряда и характеристика самобалансировки LFP-батареи, дают возможность упростить защиту аккумулятора и сбалансировать печатные платы, снизив их себестоимость. Одноступенчатый процесс зарядки позволяет применять более простой, обыкновенный источник питания для зарядки LiFePO4, чего не скажешь о литий-ионном электронакопителе, для которого требуется сложное и дорогое зарядное оборудование.

Сравнение LiFePO4 и Li-ion — что лучше?

2739960november.jpg

Выше в теме я привёл основные характеристики этих разновидностей батарей, но, для большего понимания ситуации, стоит углубиться в подробности.

Сразу скажу: тут стоит отдать должное Li-ion источникам питания, так как именно они чаще всего становятся для потребителя оптимальным выбором.

Стоят они меньше, меньше у них и масса, а при щадящем режиме работы, Li-ion могут предложить юзеру около тысячи циклов. Однако если вам предстоит эксплуатировать индивидуальный электротранспорт в жёстких условиях, к примеру, ездить на электрифицированном велосипеде при минусовых температурах, то стоит отдать приоритет LiFePO4. Такие источники питания совмещают в себе все плюсы Li-ion, но у них отсутствуют их негативные стороны.

Пиковые токи нагрузки и заряда не наносят вреда ресурсу LFP аккумулятора. Кроме того, электронакопители такого типа имеют меньшую склонность к естественной деградации, предлагают минимальный саморазряд и весьма широкий диапазон рабочих температур. Обладателя LFP аккумулятора, порадует и то, что изделие может выдержать более 2000 циклов при утрате ёмкости на 20%. Так что, по выносливости и долговечности LFP-батареи переигрывают остальные литиевые исполнения. В то же время нужно учитывать, что LiFePO4 весят больше чем Li-ion и вдобавок они габаритнее.

В общем, суть такова: перед выбором литиевого энергонакопителя, чётко определитесь со своими приоритетами и условиями дальнейшего использования АКБ.

Применение LFP аккумуляторов

ebike-battery-48v-9ah-lithium-ion-charging.jpg

Системы автономного электроснабжения, в состав которых входят ветрогенераторы и солнечные батареи — вот где LFP активно используется как буферный накопитель. LiFePO4 оборудуется складская техника, поломоечные машины, гольфкары, водный транспорт, электрические велосипеды, электрические скутера, электрические автобусы и электромобили. LFP-накопители также обслуживают телефоны, планшеты и шуруповёрты.

Как правильно эксплуатировать LFP батареи

Не превышайте дозволенные параметры

Любые Li-ion электронакопители, в том числе и новые LFP изделия, довольно быстро вырабатывают свой ресурс, если разряжать их по максимуму либо длительное время удерживать на зарядке. В том случае, если источник энергии часто разряжается ниже допустимого предела, он начнёт утрачивать в ёмкости и по прошествии некоторого времени, электронакопитель будет разряжаться в ускоренном темпе. Также, от перезарядки может случиться такое недоразумение как вздутие девайса, по причине того, что внутри ячеек скапливается газ, а итогом является неприятный всем выход из строя.

Читайте также:  Зарядное уcтройство CBHD2 12 24V SB50 с изменяемым напряжением S P E CBHD212 24 15 20

Для продления срока эксплуатации LiFePO4, заряжать его рекомендуются до 3,65 V (пик 3,7 V), а разряжать не ниже показателя 2,5 V (пик 2 V).

Применяйте систему управления батареей (BMS)

Аккумуляторные батареи мобильных устройств и электрокаров, как правило, заряжаются на 100%, а затем сразу идут в работу. Однако если не отключить зарядную аппаратуру после полной «заправки», электронакопитель разбухнет и откажется продолжать дальнейшую работу. Думаете нужно в обязательном порядке тщательно следить за напряжением АКБ, чтобы она не разряжалась до минимального значения и не достигала излишнего заряда? Реально, делать это необязательно — разработчики давно решили данную проблему! Они начали ставить на каждую аккумуляторную батарею специальную защитную плату, так называемую BMS. Деталь контролирует показатели источника электроэнергии, от которого заряжается LiFePO4. Она полностью отвечает за зарядку/разрядку АКБ.

Если LFP-батарея начнёт подвергаться зарядке сверх нормы, BMS организует равномерное распределение нагрузки по ячейкам. Если электронакопитель разрядится в значительной степени, контрольная плата прекратит подачу электроэнергии потребителям.

561fe621-ef14-11e9-872b-525400e33e22-e70e9925-ef14-11e9-872b-525400e33e22.png

Если вы приобретаете не целую батарею, а только ячейки и игнорируете внедрение BMS, то распределение напряжения при зарядке АКБ будет неравномерным. К примеру, в вашем распоряжении аккумуляторная батарея состоящая из двух пар ячеек LFP. По ходу дела три ячейки достигают примерно одинакового уровня заряда, где-то на 3,5 V. А вот четвёртая ячейка по заряду выходит значительно выше — 4,25 V. Чем чревата такая разность? Тем, что четвёртая ячейка начнёт заряжаться сверх допустимого и даст сбой. При этом, общее напряжение при зарядке остаётся в пределах дозволенных значений.

Может случиться так, что установить BMS по каким либо причинам будет невозможно и возникает вопрос — а что делать в этом случае? Поставьте хотя бы балансировочные платы, которые помогут удерживать напряжение сбалансированным.

Но в то же время, «балансиры» ничем не помогут накопителю энергии, если все ячейки разрядятся до критического уровня либо начнут перезаряжаться. Кроме того, если расхождение в заряде ячеек будет значительным, балансировочная деталь не будет выравнивать напряжение.

Хотите по максимуму защитить LiFePO4 электронакопитель? Лучший способ сделать это, установить плату BMS, которая будет прекрасно справляться со своими прямыми обязанностями избавляя вас при этом от лишней головной боли.

Режим работы

ps1512486749.jpg

Любую аккумуляторную батарею можно эксплуатировать в двух режимах: буферном и циклическом. Начнём с циклического режима. Вы пользуетесь мобильным устройством целый день, затем устанавливаете его на зарядку, а когда аккумулятор заряжен на сто процентов — продолжаете использовать девайс. А вот что касается буферного режима, то это когда электронакопитель постоянно подзаряжается. Буферный режим встречается в бесперебойных источниках питания. При нём напряжение аккумуляторной батареи редко снижается до критических показателей, по этой причине он проработает дольше, чем если будет функционировать в циклическом режиме.

Если хотите дополнительно продлить срок эксплуатации электронакопителя, понизьте напряжение заряда. Как правило, для LFP-батарей, это 3,40-3,45 V. Однако самый лучший вариант — свериться с теми значениями, которые рекомендует изготовитель АКБ.

Балансировка ячеек

Если вы предпочли собирать LFP-накопитель собственными силами, то перед сборкой нужно в обязательном порядке отбалансировать ячейки — 3,2-вольтовые. Ячейки не всегда являются заряженными в одинаковой степени, поэтому перед применением устройства, его рекомендуется предварительно отбалансировать. Для этого потребуется параллельно соединить каждую ячейку: «+» с «+» и «-» с «-» каждой ячейки. После состыковки зарядите ячейки до 3,65 V.

Если одна либо несколько ячеек продемонстрируют разность сопротивлений, в процессе балансировки будет происходить выравнивание напряжений между компонентами.

Для сбережения ресурса LiFePo4 важно:

1. Применять специальные ЗУ, которые предназначены для аккумуляторов LFP с обозначением конечного напряжения. Зарядки для литиевых АКБ других типов, для LiFePo4 изделий не годятся, так как у LFP более низкое рабочее напряжение.

2. Не следует оставлять источник энергии разряженным. Если последующий саморазряд повлечёт за собой критическое снижение напряжения хотя бы на одном элементе АКБ, это отрицательно скажется на ёмкости всего электронакопителя. Поэтому, если LiFePo4 почти разрядилась, её нужно как можно быстрее установить на зарядку и довести до номинального напряжения, а это 3,2 V на компонент.

3. Не допускайте разряда аккумулятора до его отключения посредством BMS и заряжайте гаджет после каждого применения. LiFePo4 не страдают от эффекта памяти, а полные циклы разряда будут только негативным образом сказываться на ресурсе девайса.

4. Заряжайте агрегат при температуре корпуса приближённой к комнатной. Если накопитель энергии был перед зарядкой на холоде, нужно сначала нагреть его до комнатной температуры. Для этого потребуется 4-5 часов пребывания в тёплом помещении.

5. Для зарядки LiFePo4 лучшим вариантом будут «умные» ЗУ либо контроллеры. Они обеспечивают подзарядку систем напряжением 12-14,6 V, а по прошествии 10-20 минут снижают напряжение до 13,6–13,8 V, то есть, до 3,4–3,45 V на каждый отдельный элемент.

Правила хранения и утилизации LiFePo4

13k6tau.jpeg

Перед тем как отправить LFP на продолжительное хранение, зарядите его до 40-60% и поддерживайте такой уровень на протяжении всего срока хранения. Аккумулятор следует держать в сухом месте, где температурный режим не опускается ниже комнатных показателей.

Когда ваша аккумуляторная батарея полностью отработает своё, следует обратиться в специальную организацию, занимающуюся утилизацией подобного оборудования. Если вы поступите подобным образом, то можете даже заработать на этом. Но в то же время, если вы просто выбросите источник энергии LFP на свалку, ничего страшного не будет.

Заключение

Чтобы вам легче было усвоить всю информацию изложенную в статье, я приведу далее несколько пунктов, которые нужно обязательно запомнить:

1. Следите за тем, чтобы напряжение LiFePo4 не опускалось ниже 2 V и не заходило за отметку 3,7 V. Что касается идеального диапазона, то это 2,5-3,65 V.

2. Если будете собирать батарею LFP самостоятельно, не забудьте про BMS.

3. Если используете АКБ в буферном режиме, понизьте её напряжение. Рекомендуемые параметры — 3,4-3,45 V.

4. Заряжать LFP нужно специальной зарядкой.

5. Перед самостоятельной сборкой электронакопителя, отбалансируйте ячейки, чтобы выровнять напряжение.

Основные преимущества LFP:

1. Продолжительный срок эксплуатации — 2000-7000 циклов заряда/разряда. При этом потеря ёмкости составляет 20%.

2. Срок хранения — 12-15 лет.

3. Может работать при широком диапазоне температур — -30. +60 градусов. Из этого можно сделать простой вывод: LFP хорошо подходят для использования зимой.

4. Не воспламеняется при повреждении компонентов.

5. Устойчивость к переразряду.

Естественно, не обошлось и без недостатков: это бОльшая по сравнению с Li-ion масса и себестоимость. Хотя уже можно обзавестись на Али.

Источник

Разница между Li-ion и LiFePO4 аккумуляторами

Обратите внимание, что характеристики у обоих типов химий могут значительно отличаться в зависимости от производителя и точно указаны в технических паспортах (datasheet) от производителя. В статье даны усредненные значения.

Литий-ионные аккумуляторы чаще всего используют любители электровелосипедов, они популярны за счет небольшого веса и компактных размеров. Литий-железо-фосфатные аккумуляторы при той же энергоемкости больше и тяжелее, но имеют более стабильные разрядные характеристики и, больший эксплуатационный ресурс.

Разница между Li-ion и LiFePO4 батареями

  • Количество циклов переразряда (ресурс).

Литий-ферро-фосфатные аккумуляторы способны выдержать до 3000 перезарядов, что в 2-3 раза больше, чем литий-ионные аккумуляторы.

  • Диапазон рабочих температур

АКБ LiFePO4 способны работать в диапазоне температур от-30 до +70 градусов Цельсия, Li-ion аккумуляторы имеют более ограниченные температурные рамки (-20…+40 градусов по Цельсию).

  • Уровень удельной емкости и плотности разрядного тока

У новых LiFePO4 аккумуляторов плотность энергии на 14% ниже, чем Li-ion батарей.

  • Термическая и химическая стабильность

Этот показатель у литий-ферро-форфатных аккумуляторов существенно выше, поэтому они являются более безопасными. При повреждении LiFePO4 батареи могут нагреваться или дымить,горят,как батареи Li-ion.

  • Стабильность напряжения разряда

Аккумуляторы LiFePO4 обеспечивают постоянное напряжение в процессе разряда, и по этому критерию являются лучше аккумуляторов Li-ion. Если сравнивать два наполовину разряженных АКБ разных типов химий, то на лифере мощность сравни полностью заряженному, так как напряжение в процессе разряда практически на падает, а как мы знаем произведение напряжения на силу тока и есть мощность.

Разница между Li-ion и LiFePO 4 батареями

Как видим, технические возможности и характеристики литий-железо-фосфатных аккумуляторов более высокие, чем литий-ионных. Практически каждое отличие литий-ионного аккумулятора от литий-железо-фосфатного в пользу последнего.

Однако есть у LiFePO4 batteries и недостатки, и самый главный минус для потребителя более высокая цена на такие батареи. Тем не менее, те пользователи, которые во главу угла ставят экологичность и высокий ресурс аккумулятора, чаще выбирают для электротранспорта батарею LiFePO4.

Источник

Adblock
detector