Меню

Как устроен аккумулятор телефона и принцип его работы



Как устроен аккумулятор телефона и принцип его работы

Ушли в прошлое времена, когда аккумуляторные батареи для сотовых телефонов собирали аналогично автомобильным, только в миниатюре. Лишь 20 лет назад аккумулятор сотового телефона был устроен из частей как бы повторяющих весь комплекс устройств большего собрата. На рисунке показан разрез одного из таких элементов.

Как устроен аккумулятор телефона и принцип его работы

Наука и практика совместными усилиями продвигает технический прогресс. В 1991 году появились литий-ионные аккумуляторы, в которых катодный материал электродов наносится на алюминиевую фольгу, анодный — на медную.

Ионы лития, под воздействием электрического тока, внедряются в кристаллическую решетку графита и образуют с молекулами углерода химические связи. При разрыве этих связей высвобождается энергия, превращающаяся на полюсах батареи в электрический ток.

В последние годы появились литий-полимерные аккумуляторы.

На схеме видно как просто устроен такой аккумулятор для сотового телефона.

Как устроен аккумулятор телефона и принцип его работы kak_ustroen_akkumulator_telefona

Банки аккумулятора телефона

Банки аккумулятора – это мягкие пластиковые пакеты, заполненные раствором лития в полимере, по консистенции похожим на сметану. Для контроля за состоянием батареи к банкам подключен контроллер. Он устроен в виде электронной платы и может ограничивать подключение зарядного устройства, не соответствующего по параметрам, и аккумулятор сотового телефона заряжаться не будет, как бы мы ни старались. Вместо обычных 2 контактов для соединения с платой сотового телефона в устройстве аккумулятора применяется коннектор – многополюсное соединение.

Как устроен аккумулятор телефона и принцип его работы

Процесс накапливания и отдачи энергии таких источников постоянного тока аналогичен литий-ионным аккумуляторам, но их производство гораздо дешевле, хотя по некоторым характеристикам они проигрывают своим предшественникам.

Основные предосторожности, которые нужно соблюдать при использовании малогабаритных телефонных аккумуляторов, ничем не отличаются от эксплуатационных мер безопасности кислотных или щелочных источников постоянного тока, устанавливаемых на автомобилях. Заряд повышенным напряжением, приводящим к перегреву или короткое замыкание банок аккумулятора может привести к пожару. А от маленькой искры, как известно, разгорается большое пламя.

Именно поэтому на каждом аккумуляторе установлен контроллер батареи, отключающий зарядку при достижении определенного значения и выключающий телефон, когда разрядка доходит до критической черты.

Источник

Как устроены аккумуляторы телефонов

Сегодня редко встретишь устройство, работающее от механической энергии, – подавляющее большинство гаджетов питается электричеством. Аккумуляторы стали неотъемлемой частью электронных девайсов. Как устроена батарейка? Попробуем разобраться.

Существует много разновидностей аккумуляторов, но в бытовой электронике чаще всего применяются никель-кадмиевые (NiCd), никель-металл-гидридные (NiMh) и литий-ионные (Li-Ion) батареи.

Дольше всего используются NiCd-аккумуляторы благодаря своей простоте в изготовлении, эксплуатации и хранении. До сих пор NiCd-аккумуляторы остаются наиболее популярными для питания радиостанций, медицинского оборудования, профессиональных видеокамер и мощных инструментов.

NiMH-аккумулятор, по сравнению с NiCd, выделяет значительно большее количество тепла во время заряда. Ему также требуется более сложный алгоритм определения момента полного заряда. Поэтому большинство NiMH-аккумуляторов оборудовано внутренним температурным датчиком. Кроме того, NiMH-аккумулятор не может заряжаться быстро – время заряда обычно вдвое больше, чем у NiCd. Но зато их емкость больше, чем у NiCd.

Характеристики Li-Ion-аккумуляторов вдвое превышают показатели NiCd- аккумуляторов в пересчете на один килограмм веса. Именно поэтому Li-Ion-батареи используются во всех ноутбуках и телефонах, где важен вес и время автономной работы.

Как работает аккумулятор?

Аккумуляторы и батарейки работают благодаря разности напряжения между двумя металлическими пластинами, погруженными в раствор электролита. Впервые источник тока, работающий по такому принципу, был создан в XIX веке. Одна пластина в нем была медной, вторая – цинковой, которая очень быстро растворялась.

Разность напряжений можно объяснить на примере аналогии с двумя емкостями с жидкостью, которые соединены трубкой. Чтобы вода в трубке начала двигаться, нужно создать разность уровней, например, поднять одну емкость выше другой. Постепенно вода перетечет из левой бутылки в правую. Когда уровни сравняются, ток воды прекращается. Для аккумулятора это значит полный разряд.

Чтобы его перезарядить, надо вернуть воду в первоначальную емкость. Например, с помощью черпачка или чашки. Если вычерпывать воду из правой бутылки и выливать ее в левую, аккумулятор будет заряжаться. Конечно, вычерпывать нужно с такой же скоростью, с какой вода вытекает по шлангу. Иначе опять аккумулятор разрядится.

Конструктивно же сам аккумулятор – предельно простое устройство. Это два длинных листка из графита и из оксида лития с кобальтом. Они смазываются электролитом и сворачиваются в рулон. Литий-ионный аккумулятор готов.

Мифы об аккумуляторах

Распространено мнение, что сразу после покупки Li-Ion-аккумулятор нужно «раскачать» – провести несколько циклов полного заряда-разряда. Обычно – от трех до пяти. Этот миф не очень вредный для аккумуляторов, но, тем не менее, тратит его циклы работы.

Свойство Li-Ion-аккумуляторов заключается в том, что они не имеют эффекта памяти, как это было с NiCd-батареями. Этот эффект заключался в том, что если зарядить не до конца разряженный NiCd-аккумулятор, его емкость падала. Li-Ion такой особенности не имеет. Более того, производитель гарантирует, что емкость аккумулятора не снизится за 300 циклов разряда-заряда.

Еще раз: плеер, телефон, рацию, кпк, планшет, часы или любой другой мобильный девайс с Li-Ion «тренировать» бесполезно.

Аккумуляторы Li-Ion вообще не любят слишком большого заряда и разряда. Производитель гарантирует 300 циклов, но это не значит, что на 301 цикл батарею можно выбрасывать. Все будет зависеть от условий эксплуатации. «Тепличными» условиями для Li-Ion является максимальный заряд до 80%, а минимальный разряд – до 40%. Некоторые модели ноутбуков позволяют выставить эти параметры в сервисном ПО, продлевая «жизнь» батарее. Также аккумуляторы безвозвратно теряют емкость при температуре ниже нуля градусов и при нагреве выше +40 градусов. Поэтому гаджеты лучше беречь от мороза и высокого нагрева.

Источник

Как устроен аккумулятор телефона и принцип его работы

Конструкция аккумуляторов смартфона.

Разд е л: Новичкам, Аккумулятор Дата: 18.04.2020 Автор: Александр Мойсеенко . Комментариев: 0

Последнее обновление: 07/05/2021

В телефонах, а так же различных мобильных аксессуарах используются литий-ионные и литий-полимерные аккумуляторы. В статье описана конструкция обоих типов источников питания, а так же принцип работы.

Конструкция литий-ионного аккумулятора

Аккумулятор литий-ионного типа выполнен в герметичном корпусе. Внутри располагаются два электрода – анод и катод, разделенные пористым сепаратором, пропитанным жидким электролитом. Оба электрода соединены с индивидуальными токосъемниками и выведены наружу. Отрицательный анод изготавливается из медной фольги, а положительный катод из алюминиевой. В качестве переносчика заряда выступает ион лития.

Читайте также:  Аккумуляторы для фотоаппаратов и видеокамер Canon совместимые с аккумуляторной батареей BP 970G

Анод и катод в виде ленты плотно свернуты в рулон прямоугольной формы с нанесенным на обратной стороне слоем тонкого графита. Наличие сепаратора обусловлено разделением положительного и отрицательного электрода, поскольку при соприкосновении двух электродов образуется короткое замыкание, что приводит к воспламенению или взрыву батареи. А пористая структура сепаратора позволяет ионам лития свободно перемещаться с анода на катод и обратно.

Схематичная конструкция аккумулятора.

Принцип работы

При зарядке батареи, ионы лития через электролит перемещаются с положительного катода на отрицательный анод. При зарядке батареи происходит обратный процесс – ион лития покидает отрицательный анод и встраивается в катодный материал. Далее электроны выходят через внешнюю цепь и распределяются контроллером для питания необходимых узлов.

Так же большинство аккумуляторов снабжаются внешними платами защиты. Печатная плата содержит контроллер питания, что ограничивает прием и отдачу энергии при достижении определенного напряжения. Защитный механизм оставляет часть энергии при полной разрядке батареи, сохраняя внутреннюю целостность и возможность дальнейшей эксплуатации аккумулятора. При заполнении энергии питание отключается до наступления разрушения батареи. Если же защитная плата отсутствует, вышеописанные действия выполняет контроллер питания устройства, где располагается аккумулятор.

Конструкция литий-полимерного аккумулятора

Конструктивно литий-полимерные аккумуляторы не многим отличаются в сравнении с литий-ионными. Основное различие в электролите, где вместо жидкого наполнителя используется сухой либо гелеобразный материал на основе полимеров. Благодаря переходу с жидкого электролита на «твердый», получилось реализовать выпуск батарей разной формы, включая тонкие варианты толщиной в 2 мм.

Принцип работы остался прежним. Ионы лития при зарядке батареи перемещаются с катода на анод, а при разрядке с анода на катод. Для удержания заряженных ионов на аноде выступает графит. А для внедрения в катод оксиды кобальта, марганца или ванадия. Ввиду дороговизны кобальта, производители чаще используют различные сплавы на основе кобальта, с целью снижения себестоимости производства.

Вывод

В статье подробно описано, из чего сделаны аккумуляторы для сотовых телефонов. Так же описан принцип работы литий-ионных и литий-полимерных батарей.

Какие у вас остались вопросы? Оставляйте сообщения в комментариях под статьей.

Источник

Анатомия мобильного аккумулятора

Тысячи мобильных гаджетов нуждаются в бесперебойных поставках энергии в свои маленькие тела. Энергоносителем для таких устройств выступают аккумуляторы, запасающие электричество в ячейках. В отличие от обычных батареек, они способны выдержать до 15 000 циклов заряда-разряда.

Устройство аккумулятора

Классическая батарея — банка с положительно заряженным графитовым анодом и отрицательно заряженным катодом, между которыми находится пористая прокладка, покрытая активным веществом — электролитом. Электрический заряд хранит в себе положительно заряженные ионы, выстраивающиеся в кристаллическую решетку токопроводящего электролита. При зарядке, ток гонит ионы к аноду, при разрядке они меняют свое направление, отправляясь обратно к катоду.

Сейчас выделяют три основных типа перезаряжаемых батарей: металл-гидроидные (Ni-MH), никель-кадмиевые (Ni-Cd) и литий-ионные (Li-ion).

Ni-cd и Ni-MH злопамятные. Они запоминают, что их уже зарядили, и теряют часть емкости при новой попытке заправить их под завязку — процесс получил название «эффект памяти». Именно из-за этого особой популярности у переносных устройств они не завоевали.

В свою очередь литиевые подразделяются на кобальтовые, марганцевые и титанатные. Именно о них мы и поговорим в данном блоге, ведь только Li-ion оптимально зарекомендовали себя среди мобильных устройств.

Литиевое семейство

LiCoO2 — химическое соединение литий-кобальта, которое отличается высокой энергоемкостью с номинальным напряжением в 3,6 В и пиковым — 4,2 В. Легкие, емкие, быстро заряжаются и гарантированно обеспечивают стабильную работу шуруповерта, ноутбука, телефона на протяжении до 1000 перезарядок. Единственный минус — высокая цена кобальта, из которого делают катод.

LiMn2O4 — литий-марганцевые батареи имеют более высокое напряжение при сниженном жизненном цикле — 700 перезарядов. Применяются в энергоемких гаджетах.

LiNiMnCoO2— удачный результат симбиоза, получивший неоспоримое преимущество. Литий-никель-марганец-кобальтовые аккумуляторы могут перезаряжаться до 2000 раз, в каждой банке до 2800 мА·ч. Используются для создания источников питания для автомобилей, гироскутеров.

Li4Ti5O12 — литий-титанатный конкурент вышеописанного аккумулятора. Заряжается в 5 раз быстрее, но выдает низкий ток и не так энергоэффективен. Размер батареи на 200-300% больше LiNiMnCoO2 при равном объеме, из-за этого не может применяться в носимых устройствах. Литий- титанатные аноды испускают дух только после 15 000 циклов и эффективно противостоят холоду, поэтому их используют в Московских электробусах.

Li-pol — литий-полимерные аккумуляторы на 25% энергоэффективнее, но при этом быстрее деградируют, способны перезаряжаться около 1000 раз. Полимер позволяет делать батарею гибкой, благодаря этой технологии появилось большое количество сгибаемых портативных устройств.

Отрицательная черта всего семейства литий-ионных батарей — чувствительность к сильным токам и страх перед полной разрядкой. Под высокой нагрузкой они теряют часть «жизненных сил» и быстрее выходят из строя. Решают эту проблему контроллеры заряда, следящие за силой тока и нагревом батарейки. Чем полней коробочка, тем жарче внутри, именно поэтому быстрая зарядка работает только до 50%, затем интенсивность заполнения емкости снижается. Подробнее можно ознакомиться здесь.

Проблема недержания

Отработав несколько сотен циклов, батарея начинает деградировать, частично теряя способность удерживать заряд. Процесс заполнения батареи энергией похож на накачку водонапорной башни. Чтобы поднять жидкость вверх, потребуется энергия, назад вода бежит своим ходом. Тоже происходит и с ионами, чтобы оторвать их от катода, требуется ток, от анода они убегают самостоятельно.

Тепло и мороз

Высокие температуры, равно как и мороз, негативно влияют на поведение накопителя. Набившись стайкой в банку, ионы провоцируют повышение градуса по Цельсию. Каждый раз, когда аккумулятор «жарится» под нагрузкой или при зарядке, часть ионов слипается, лишаясь возможности двигаться и передавать энергию.

Холод тоже негативно влияет на способность батареи к удержанию энергии и способен нанести необратимый урон. Почему аккумуляторы теряют стойкость на морозе и как уберечь свой гаджет от быстрой потери заряда, вы можете прочитать в блоге на эту тему.

Кислая проблема

С точки зрения химии в батарее происходит окислительно-восстановительный процесс, его проявление иногда заметно на поверхности батарей, покрывшихся белым/зеленым порошком — окисью. Катод и анод предают энергию через коллектор тока, связанный с ними клейким материалом. Со временем «сцепка» осыпается из-за циклов нагрева и охлаждения, обнажая алюминиевую ножку коллектора. Анод передает эстафету коррозии коллектору, который по своей ножке поднимает окись вверх. Катод состоит из графита, который может покрыться налетом, но передать окись металлу не способен. Иногда к ним присоединяется электролит, выливающийся из-за повреждения банки, слишком разросшимся кристаллом — это процесс сопровождается вздутием. Батарея — должна быть герметична, если окись вышла посмотреть, что делается в большом мире, внутри полный аут, остается только выкинуть.

Читайте также:  Аккумуляторы для Opel Insignia в Орске

Что в итоге?

Идеальных аккумуляторов не существует, более чем за 100 лет производства инженеры разработали десятки видов накопителей энергии, но не смогли создать универсального. Подбирая аккумулятор, необходимо ориентироваться на конкретные задачи, выбирая между объемом и мощностью.

Источник

Аккумуляторы для мобильных устройств

Устройство и основные параметры

Сотовые телефоны и переносные компьютеры, радиостанции и радиотелефоны, источники бесперебойного питания, кинокамеры и фотоаппараты, ручные мощные инструменты, медицинские приборы, разнообразное производственное оборудование — вот далеко не полный перечень устройств, нормальная работоспособность которых напрямую зависит от состояния аккумуляторов. В связи с этим, знание характеристик, особенностей и условий эксплуатации различных типов аккумуляторов приобретает особое значение и является залогом безотказной работы мобильных устройств и портативного оборудования.

Если Вы любопытны и обладаете некоторыми навыками по порче игрушек, приобретенными еще в детстве, то уже наверняка познакомились с внутренним устройством своего бывшего в эксплуатации аккумулятора. Что же там внутри? (Не советую разбирать, это связано с риском получения физических повреждений). Вообще то ничего особенного. Круглые или призматические «батарейки», каких навалом в ближайшем магазине, причем по гораздо более низкой цене. Однако первое впечатление — обманчиво. Перед Вами не просто батарейки, а аккумуляторы. И отличаются они от батареек тем, что допускают (в силу обратимости протекающих в них реакций) многократные циклы разряда — заряда. В этом их преимущество перед батарейками, но с другой стороны и «головная боль», которую они приносят в случае потери работоспособности. И если с первыми все просто: купил, вставил, истощились, выбросил и купил новые, то с аккумуляторами дело обстоит сложнее. Для них последовательность действий иная: купил; подготовил к работе; пользуешься, соблюдая правила эксплуатации; и только когда уже совсем невмоготу — покупаешь новый.

Итак, чтобы не было мучительно больно за бесцельно потраченные деньги, ниже информация для любопытных и любознательных на тему: что нужно знать об аккумуляторах для мобильных телефонов и портативных компьютеров.

Устройство

Здесь и далее речь пойдет о никель-кадмиевых (NiCd), никель-металлгидридных (NiMH) и литий-ионных (Li-ion) аккумуляторах.

Любой аккумулятор, как правило, состоит из нескольких единичных элементов, соединенных последовательно для увеличения значения вырабатываемого напряжения и упакованных в общий корпус. С конструкцией единичного элемента аккумулятора, например никель-металлгидридного, с электрохимическими реакциями, проходящими внутри него, и другими полезными сведениями (на английском языке) можно познакомиться на сайте фирмы Panasonic, загрузив файл в формате pdf Overview information on NiMH Batteries in PDF Format — 137KB.

Кроме единичных элементов аккумуляторы на основе никеля содержат внутри тепловой предохранитель и датчик температуры (последний в NiCd аккумуляторах может отсутствовать). Тепловой предохранитель обеспечивает безопасность при больших токах заряда, а выходной сигнал датчика температуры обрабатывается зарядным устройством. В зависимости от значения температуры «грамотное» зарядное устройство обеспечивает различные режимы заряда аккумулятора: быстрый, медленный и переключение от одного к другому.

Литий-ионные аккумуляторы помимо теплового предохранителя и датчика температуры содержат специальную управляющую интегральную схему и управляющие ключи. Все это в совокупности призвано защитить потребителя от физических повреждений в случае нарушения электрических режимов эксплуатации аккумулятора.

ОСНОВНЫЕ ПАРАМЕТРЫ АККУМУЛЯТОРОВ

Да будет Вам известно, что аккумулятор, как электрический прибор, характеризуется следующими основными параметрами: типом электрохимической системы, напряжением, электрической емкостью, внутренним сопротивлением, током саморазряда и сроком службы. Причем, в зависимости от сферы применения на первый план выступают то одни параметры, то другие. Например, аккумулятор для сотовых телефонов должен оцениваться по совокупности значений трех его основных характеристик: реальной емкости, внутреннему сопротивлению и току саморазряда, а аккумулятор домашнего радиотелефона с радиусом действия до 100 метров достаточно оценить только по емкости и саморазряду. При недооценке или игнорировании какого-либо параметра или преувеличении важности одного из них (как правило, емкости) можно оказаться в ситуации «у разбитого корыта».

Напряжение. Напряжение аккумулятора определяется тем устройством, для питания которого он предназначен. Если требуемое значение напряжения не обеспечивается одним элементом, то аккумулятор собирается из нескольких элементов, соединенных последовательно. Например, в сотовых телефонах различных моделей используются аккумуляторы напряжением 3,6 В (1 Li-ion элемент или 3 NiCd, или 3 NiMH элемента), 4,8 В (только 3 NiCd или 3 NiMH элемента), 6 В (только 5 NiCd или 5 NiMH элементов), 7,2 В (2 Li-ion элемента). Таким образом, если в телефоне используются 4 NiMH аккумулятора общим напряжением 4,8 В (как, например, в некоторых последних моделях фирмы Ericsson), то использование в нем Li-ion аккумуляторов невозможно. Напряжение аккумулятора в процессе работы не постоянно. Оно максимально сразу после окончания заряда, а затем в процессе работы или хранения уменьшается. В конце концов, оно уменьшается до такой величины, что сотовый телефон не включается или автоматически выключается. При оценке состояния аккумулятора измерение его напряжения необходимо производить под нагрузкой, на которую он рассчитан.

Электрическая емкость. Номинальная электрическая емкость — это то количество энергии, которым аккумулятор теоретически должен обладать в заряженном состоянии. Данный параметр аналогичен емкости какого-либо сосуда, например, стакана. Так в стандартный граненый стакан можно налить 200 мл воды (по ободок), в конкретный аккумулятор можно закачать также лишь вполне определенное количество энергии. Но определяется это количество энергии (емкость) не в момент закачивания (заливания), а при обратном процессе — разряде (выливании энергии) аккумулятора постоянным током в течение измеряемого промежутка времени до момента достижения заданного порогового напряжения. Измеряется емкость соответственно в ампер-часах (А·час) или миллиампер-часах (мА·час) и обозначается буквой «С». Значение емкости указывается на этикетке аккумулятора или зашифровано в обозначении его типа. Реальное значение емкости нового аккумулятора на момент ввода его в эксплуатацию колеблется от 80 до 110% от номинального значения и зависит: от фирмы-изготовителя, условий и срока хранения и технологии ввода в эксплуатацию. Теоретически аккумулятор, например, номинальной емкостью 1000 мА*час может отдавать ток 1000 мА в течение одного часа, 100 мА в течение 10 часов, или 10 мА в течение 100 часов. Практически же, при высоком значении тока разряда номинальная емкость не достигается, а при низком токе — превышается.

Читайте также:  Продажа аккумуляторов lenovo a1000

В процессе эксплуатации емкость аккумулятора уменьшается. Скорость уменьшения зависит от типа электрохимической системы, технологии обслуживания в процессе работы, используемых зарядных устройств, условий и срока эксплуатации. Используя ту же аналогию со стаканом, можно сказать, что количество наливаемой в стакан воды будет уменьшаться, если будете наливать воду с большим количеством механических примесей, а сливать — отстоявшуюся. Тогда в стакане постепенно будет накапливаться осадок, уменьшающий его полезную емкость. В аккумуляторе подобный «осадок» образуется в процессе циклов заряда / разряда.

Внутреннее сопротивление. Внутреннее сопротивление аккумулятора (сопротивление источника тока) определяет его способность отдавать в нагрузку большой ток. Эта зависимость подчиняется закону Ома (вспомните курс школьной физики). При низком значении внутреннего сопротивления, аккумулятор способен отдать в нагрузку больший пиковый ток (без существенного уменьшения напряжения на его выводах), а значит и большую пиковую мощность. В то время как высокое значение сопротивления приводит к резкому уменьшению напряжения на выводах аккумулятора при резком увеличении тока нагрузки. Такой коллапс (уменьшение) напряжения характеризует «слабость» внешне хорошего аккумулятора, потому что запасенная энергия не может быть полностью выдана в нагрузку.

Другими словами, все вышесказанное о внутреннем сопротивлении аккумулятора может быть проиллюстрировано следующим образом. Представим себе, что Вам необходимо за час полить садовый участок из бака (аккумулятор), который Вы ранее заполнили водой. При нормальном положении вещей Вы подключаете к сливному крану шланг, полностью открываете кран и поливаете участок в течение часа до тех пор, пока вода в баке не закончится. А теперь предположим, что сливной кран у вашего бака заклинило, открыть его можно только чуть-чуть и вода сочится из него лишь тоненькой струйкой. Вроде бы и вода в баке есть (аккумулятор заряжен), а нормально поливать невозможно. Кран в данном случае играет роль внутреннего сопротивления для бака. Если струя из крана большая, то внутреннее сопротивление бака мало, если — маленькая — внутреннее сопротивление бака большое.

Что имеем практически? Сотовый телефон в режиме ожидания потребляет от аккумулятора небольшой ток и пропускной способности крана его аккумулятора вполне хватает для питания телефона. Как только поступает входящий звонок или Вы начинаете делать исходящий, телефону требуется в десятки раз больше энергии для нормальной работы в режиме передачи, поэтому требуется увеличить пропускную способность крана. Если кран — нормальный, то он пропустит через себя этот увеличенный поток энергии, если его — заклинило, то — нет, и телефон отключается. Это особенно характерно для сотовых телефонов стандартов NMT, AMPS, транковых и обычных радиостанций, портативных компьютеров.

Внутреннее сопротивление аккумулятора зависит от типа его электрохимической системы, емкости, числа элементов в аккумуляторе, соединенных последовательно, и возрастает к концу срока эксплуатации.

Саморазряд. Явление саморазряда в большей или меньшей степени характерно для всех типов аккумуляторов и заключается в потере ими своей емкости после того, как они были полностью заряжены. Для количественной оценки саморазряда удобно использовать величину потерянной ими за определенное время емкости, выраженную в процентах от значения, полученного сразу после заряда. За промежуток времени, как правило, принимается интервал времени, равный одним суткам и одному месяцу. Так, например, для исправных NiCd аккумуляторов считается допустимым саморазряд до 10% в течение первых 24 часов после окончании заряда, для NiMH — немного больше, а для Li-ion пренебрежимо мал и оценивается за месяц. Следует отметить, что саморазряд аккумуляторов максимален именно в первые 24 часа после заряда, а затем значительно уменьшается.

Саморазряд аккумуляторов зависит от качества использованных материалов, технологического процесса изготовления, типа и конструкции аккумулятора. Он резко возрастает при повышении окружающей температуры, повреждении внутреннего сепаратора аккумулятора из-за неправильного обслуживания и вследствие процесса старения.

Срок службы (срок эксплуатации) аккумулятора. Его принято оценивать по количеству циклов заряда / разряда, которое аккумулятор выдерживает в процессе эксплуатации без значительного ухудшения своих основных параметров: емкости, саморазряда и внутреннего сопротивления. Срок службы зависит от многих факторов: методов заряда, глубины разряда, процедуры обслуживания или его отсутствия, температуры и электрохимической природы аккумулятора. Кроме того, он определяется временем, прошедшим со дня изготовления, особенно для Li-ion аккумуляторов. Аккумулятор, как правило, считается вышедшим из строя после уменьшения его емкости ниже 80% от номинального значения.

Для более подробного и профессионального ознакомления с аккумуляторами можно порекомендовать сайт фирмы Panasonic [3], где приведены подробнейшие справочные данные и аналитические материалы о NiCd, NiMH, Li-ion аккумуляторах, производимых этой фирмой (на английском языке). К сожалению, фирма не дала разрешения на перевод и публикацию этой информации на русском языке, сославшись на отсутствие ее представительства в России в этой области и невозможности оценки переведенных материалов. Но размещенные там сведения представляют определенный интерес как для разработчиков аппаратуры с питанием от аккумуляторов, так и для пользователей, поэтому ниже приведен краткий перечень освещаемых там вопросов:

  • внешний вид;
  • внутреннее устройство;
  • электрохимические реакции, происходящие внутри аккумулятора;
  • особенности;
  • пять основных характеристик: зарядные, разрядные, число циклов заряда / разряда, хранение (саморазряд), безопасность с графиками и пояснениями;
  • методы заряда;
  • упаковка элементов в аккумуляторы;
  • предосторожности при разработке устройств с аккумуляторами.

При написании статьи использованы материалы, любезно предоставленные г-ном Isidor Buchmann, основателем и главой Канадской компании Cadex Electronics Inc. [1].

Более подробная информация на русском языке об аккумуляторах для мобильной техники связи, компьютеров и других портативных приборов, советы по эксплуатации и обслуживанию приведены в [2]

ССЫЛКИ

  1. Cadex Electronics Inc., Vancouver, BC [British Columbia], Canada — разработчик и производитель зарядных устройств, анализаторов и систем обслуживания аккумуляторов (на английском языке).
  2. Аккумуляторы для мобильных устройств и портативных компьютеров. Анализаторы аккумуляторов (на русском языке).
  3. Подробнейшие сведения о NiCd, NiMH и Li-ion аккумуляторах, производимых фирмой Panasonic (на английском языке).

Источник