Меню

Как строить блок питания



Как правильно установить блок питания

За последнее десятилетие на рынке появилось много разнообразных блоков питания с активной, полупассивной и пассивной системами охлаждения. Давайте разберемся, как лучше установить блок питания в зависимости от его системы охлаждения и чем грозит его неправильная установка.

Установка блока питания в недавнем прошлом

Раньше у пользователей не было особого выбора при установке блока питания в корпус. Ведь в 90-е и нулевые годы на рынке царили стандарты форм-фактора AT и ATX, при которых блок питания, как правило, устанавливался в верхней части корпуса. БП еще и принимал активное участие в охлаждении компьютерных комплектующих, прокачивая нагретый воздух из около процессорного пространства сквозь себя.

Пока тепловыделение процессоров и видеокарт составляло 30–50 ватт, никаких проблем не возникало. Однако температурный режим в корпусе и в блоке питанияс рос вместе с тепловыделением компонентов системы. Поэтому компания Intel в 2004 году предложила стандарт BTX, призванный улучшить качество охлаждения в системном блоке, но массовым он так и не стал.

Однако стали меняться корпуса и сами блоки питания. Все чаще стали использоваться вентиляторы диаметром 120–140 мм, став практически стандартом в охлаждении БП. Постепенно и место посадки блока питания переехало в самое холодное место корпуса — вниз.

Популярный корпус Cooler Master 690 II Advanced, 2010 год.

Блоки питания наращивали мощность с каждым годом. Если в начале 2000-х годов реальная мощность массовых блоков питания составляла 150–200 ватт, то к началу 2010-х мощность повысилась до реальных 300–450 ватт, которые маркировались как 450–600 ваттные модели. Появлялись и блоки питания с пассивной системой охлаждения. Для стандартых ATX-корпусов производители обычно выносили систему охлаждения за его пределы, например как у Thermaltake Silent Purepower Fanless Heatpipe Cooling.

Корпуса с нижним расположением блока питания позволили более эффективно охлаждать сам БП. Поэтому модели с полупассивной и пассивной системами охлаждения обрели популярность.

Теперь перед пользователем, собирающим компьютер, возникают вопросы — как ставить блок питания? Вентилятором вверх или вниз? А если он совсем без вентилятора — с пассивной системой охлаждения? Давайте разберемся.

Чем опасен нагрев блока питания

Для начала стоит понять, чем опасен нагрев блока питания. Если открыть типичный БП, мы увидим целую россыпь конденсаторов. От них напрямую зависит стабильность и качество питания компьютера. Рассчитаны конденсаторы на довольно высокие температуры, в районе 85–105 градусов.

Однако со временем, под воздействием высоких температур и с ухудшающимся из-за запыленности охлаждением конденсаторы деградируют. Иногда просто «высыхают» — теряют электролит, иногда вздуваются и даже лопаются, а электролит вытекает. Деградация конденсаторов в цепи дежурного питания может вызвать проблемы с включением, а потом и подачу тока с напряжением выше 5 вольт, что гарантированно испортит материнскую плату.

Деградация фильтрующих конденсаторов в цепи питания 12 вольт вообще вызовет резкий рост пульсаций напряжения. Это выведет из строя другие конденсаторы: в цепях питания видеокарты и материнской платы.

Производители зачастую экономят на качестве конденсаторов, особенно в недорогих моделях, поэтому к вопросу охлаждения блока питания стоит подходить крайне серьезно. Ведь от него, по сути, зависит жизнь гораздо более дорогих комплектующих.

Не стоит забывать и о том, что чем выше температура поступающего в блок питания воздуха и выше его нагрев, тем ниже его эффективность. При тестировании блока питания на соответствие стандарту 80 PLUS используется температура входящего в него воздуха в 23 градуса.

Однако независимые эксперты, например, из Hardwaresecrets, тестирующие блоки питания при повышенных температурах воздуха в 45–50 градусов, приходят к выводу, что в таких жестких условиях многие блоки питания по экономичности не дотягивают до сертификата 80 PLUS.

Как ставить БП с постоянно работающим вентилятором

Если у вас корпус старого форм-фактора, где блок питания расположен сверху, то выбора у вас нет. Блок питания будет принимать активное участие в охлаждении компьютера, вытягивая нагретый воздух.

Для офисных компьютеров с маломощными компонентами это не критично. Но если у вас мощный игровой ПК, то желательно сменить корпус на такой, где блок питания будет внизу или, по крайней мере, улучшить охлаждение в корпусе, поставив высокооборотный вентилятор на выдув.

Большинство экспертов и опытных пользователей сходится во мнении, что обычный блок питания лучше поставить вентилятором вниз.

Как ставить БП с пассивной системой охлаждения

Это уже более сложный вопрос, но зачастую производитель указывает на самом блоке питания вариант установки. Обычно он ставится радиатором кверху, давая возможность нагретому воздуху беспрепятственно подниматься.

Например, у Seasonic SS-460FL ( X-460 Fanless) даже есть наклейка, строго предупреждающая только об одном способе установки. Поэтому, приобретая блок питания с пассивной системой охлаждения, заранее скачайте его техническое описание и сверьтесь, подойдет ли ваш корпус для него.

Как ставить БП с полупассивной системой охлаждения

А вот это самый сложный вопрос, не имеющий однозначного решения. Дело в том, что у каждой модели такого блока питания есть свой алгоритм включения и выключения вентилятора в зависимости от нагрузки и/или температуры. Нужно учесть, какая нагрузка и как долго будет подаваться на блок питания. Если он большую часть времени будет слабо нагружен и вентилятор не будет вращаться, то лучше ставить его вентилятором кверху для свободной конвекции нагретого воздуха.

Представим ситуацию: довольно мощный блок питания с полупассивной системой охлаждения и мощностью 850 ватт — Corsair RM850i — используется в двух компьютерах с разными сценариями работы.

Один — для работы с тяжелой нагрузкой, типа видеокодирования или вычислений на многоядерном процессоре и мощной видеокарте, а иногда для веб-серфинга и простых игр. Второй — в основном для вэб-серфинга и просмотра фильмов и не больше пары часов в день для игр с серьезной нагрузкой.

По данным производителя, Corsair RM850i должен охлаждаться пассивно, еслииспользует до 40 % мощности (350 ватт) при температуре 25 градусов.

Но в обзорах пишут, что старт вентилятора происходит при большей нагрузке.

Очевидно, что первый вариант использования ПК потребует почти постоянно активного охлаждения и Corsair RM850i лучше поставить вентилятором вниз. А при втором сценарии использования, большую часть времени он будет работать в пассивном режиме и его лучше установить вентилятором вверх.

Если же вы сомневаетесь в том, какие типы нагрузки будут постоянны для вашего блока питания и смогут ли они задействовать активный режим, то стоит поставить его вентилятором вверх. Этот режим более универсален и безопасен в случае с полупассивной системой охлаждения.

Нюансы установки БП в корпусах с кожухами над ним

Все чаще встречаются корпуса с декоративными кожухами над блоком питания, например Deepcool MATREXX 55.

Очевидно, что в случае установки блока питания с пассивной/полупассивной системой охлаждения вентилятором к верху, конвекция горячего воздуха будет крайне затруднена — случится перегрев БП. Даже если на кожухе есть перфорация, она все равно будет препятствием, ухудшающим охлаждение. Если у вас такой корпус, снимите кожух или установите БП вентилятором вниз.

Установка в корпусах уникального или редкого дизайна

На рынке присутствует множество корпусов редкого дизайна, например, кубические, тонкие slim-корпуса, модели, где блок питания стоит спереди или боком и т.д. По таким корпусам можно дать совет — более тщательно выбирать блок питания. Учитывайте как будут вести себя потоки воздуха при вентиляции такого корпуса.

Корпус Lian Li PC-Q37WX

Блоки питания со сверхнизкими оборотами системы охлаждения

Избавить вас от многих проблем сможет блок питания, вентилятор которого вращается при малой нагрузке и малой температуре с очень низкими оборотами, в районе 500 об/мин.
В плане шума такой блок питания практически не уступает моделям с пассивной и полупассивной системой охлаждения, но лишен проблем перегрева.

Например, be quiet! Dark Power Pro 11 500W, вентилятор у которого при малых нагрузках вращается от 500 об/мин и доходит при полной нагрузке всего лишь до 1000 оборотов.

Как видите, установка блока питания в корпус — это довольно непростой вопрос, иногда на который невозможно ответить однозначно. Лучше всего заранее прочитать обзоры на интересующий вас корпус и блок питания, а также спросить у владельцев этих моделей совета на форумах.

Источник

Как работает простой и мощный импульсный блок питания

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Читайте также:  Антенна реш тка на при ме цифрового ТВ

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется U П пилообразной формы, поступающее на вход компаратора К ШИМ. Ко второму входу этого устройства подводится сигнал U УС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности U П (опорное напряжение) и U РС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал U УС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (U OUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала U РС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств;

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Дмитрий, спасибо за Вашу работу. Ваше время, наши познания))) Вопрос. Можно ли построить ATX бп от питания 12В на автогенираторе собранном на IRFZ44. Схему … Читать ещё

Дмитрий, спасибо за Вашу работу. Ваше время, наши познания)))
Вопрос. Можно ли построить ATX бп от питания 12В на автогенираторе собранном на IRFZ44. Схему приложить к сожалению не могу. Но я так понимаю, что частота открывания каждого ключа реализована закрытием антагониста. Возможно ли включить в цепь генератора обратную связь? Спасибо ещё раз!)))

Сайт понравился. Но вот такой вопрос, все изложено прекрасно, но мы живем в такое время, когда редко кого заинтересует самостоятельная сборка электронного устр… Читать ещё

Сайт понравился. Но вот такой вопрос, все изложено прекрасно, но мы живем в такое время, когда редко кого заинтересует самостоятельная сборка электронного устройства. Проще купить новое. А вот вопрос быстрой проверки годности и ремонта! Например, я купил аккумуляторный опрыскиватель, он проработал без зарядки все лето. Начал заряжать, не работает зарядка. Разобрал, посмотрел, как баран, покачал палочкой монтаж, почистил от канифоли, собрал, работает. Дотронулся — не работает, пошевелил, опять работает. Хорошо бы знать методы проверки. Я лично знаю только внешний осмотр электролитов, пайку, и почернение резисторов….все!

Вполне возможно что ошиблись с намоткой трансформатора (если во всём остальном точно нет ошибок), при намотке транформатора важно учитывать не только начало и … Читать ещё

Вполне возможно что ошиблись с намоткой трансформатора (если во всём остальном точно нет ошибок), при намотке транформатора важно учитывать не только начало и конец обмоток, но так же их фактическое расположение, грубо говоря, каждая обмотка должна быть намотана равномерно т.е.: на каждую «единицу витка вторички» должна соответсвовать своя «единица первички», а первичную обмотку лучше вовсе разбить на две половины, то есть в данном случае мотается сперва 300 витков первички, далее 44витка, далее доматывается первичкп 300 витков, ну и затем обмотка связи в 5 витков.

Статья супер, но не хватает описания работы последней схемы. Можно написать, если не сложно?

Чтож… Конкретно по данной схеме (надеюсь очень детальное объяснение никому не понадобится, основательно объясню только важную часть) Диодный мост-> кондёры-> и … Читать ещё

Конкретно по данной схеме (надеюсь очень детальное объяснение никому не понадобится, основательно объясню только важную часть)

Диодный мост-> кондёры-> и поехали к блокинг генератору

Будем считать что тока пока нигде нет.

В начале цикла, транзистор приоткрывается через резистор R2 и начинает идти «заряд» трансформатора через обмотку трансформатора 1-2, т.к. ток для открывания транзистора через R2 очень мал, используется цепь: обмотка 5-6 -> пара C5 и R1, то есть после того как начинает идти насыщение трансформатора через обмотки 1-2, на обмотке 5-6 возникает ток, который, протекая через пару C5 и R1, дооткрывает транзистор и происходит полное насыщение трансформатора, в то же время конденсатор C5, является «временным ограничителем», т.к. после его полного заряда ток через него перестаёт протекать.

Стоит заметить, что трансформатор насытился по полярности «+» на конце «1» и «-» на конце «2» обмотки, ну и соответственно «5» и «3» тоже плюса. (Для упрощения в дальнейшем буду писать плюса на началах)

Далее, после полного насыщения трансформатора, происходит его разряд, и за счет «инерции» магнитного поля разряд трансформатора «заходит» на отрицательную область (обратный ход), то есть на началах обмоток теперь минуса, за счет чего происходит разряд конденсатора C5 и полное закрывание транзистора, (кстати обычно такие схемы делаются по принципу обратного хода, т.е. с обмотки 3-4, нагрузка снимается только во время обратного хода, а не ставится диодный мост) так же в этот момент происходит заряд конденсатора C6, который служит для удержания генератора в выключенном состоянии (время разряда трансформатора) VD6 необходим для более точного согласования напряжений, т.к. напряжение для закрытия транзистора необходимо менее одного вольта, а на C6 за один обратный ход накапливается несколько вольт (зависит от обмоток), после чего C6 начинает разряжается, транзистор снова приоткрывается через R2 и цикл запускается заново.

Источник

Как строить блок питания

Каждый, кто решает заняться радиолюбительством, начинает, как правило, с источника питания для своих будущих схем. В этой статье приведены самые простые варианты стабилизированных боков питания.

Схемы не сложны и собрать их не представит особого труда даже радиолюбителю без опыта. Все детали — широкого потребления, дёшевы и и найти их не составит никакой сложности. Параметры этих блоков питания вполне удовлетворяют требованиям большинства практических электронных «самоделок».

Схема N1

Первая схема собрана на транзисторах. Она широко известна с давних времён и приведена здесь в том виде, в котором изначально публиковалась в различной литературе по радиоэлектронике. Поскольку в то время широкое применение имели германиевые транзисторы, то и делали её, как правило, используя транзисторы структуры p-n-p .

В этой схеме, например, в качестве транзистора VT1 использовали МП39 — МП42 , а в качестве VT2 — П213-П217 . Поэтому у такого блока питания (БП) выходным является минусовой провод, а «плюс» схемы будет «общим». Но можно поменять полярность выхода БП, просто заменив транзисторы на аналогичные, но структуры n-p-n . При этом, также, необходимо изменить полярность включения всех диодов и электролитических конденсаторов.

Выходное напряжение этого БП определяется напряжением стабилизации применённого стабилитрона D1 . Если, например, поставить Д814 с буквами Г или Д, то на выходе получим напряжение 12. 14 вольт . Максимальный выходной ток этого БП зависит от типа применённых транзисторов («мощного» VT2) и от диодов выпрямителя . Транзистор VT2 обязательно устанавливается на теплоотводе.

Переменное напряжение на входе БП должно быть равно значению выходного постоянного, или чуть больше. Переменный резистор R2 может быть сопротивлением от 10 до 50 кОм , лучше группы «А» (в этом случае регулировка выходного напряжения будет более равномерной). Все другие резисторы должны быть мощностью не ниже 0,25 ватт. Транзисторы можно ставить любые, подходящие по мощности. Коэффициент усиления у них должен быть не ниже 15.

Настройка заключается лишь в подборе резистора R1 . С его помощью устанавливается ток через стабилитрон на уровне 15 мА . Для уменьшения уровня пульсаций на выходе схемы можно установить дополнительный «сглаживающий» конденсатор, ёмкостью от 100 мкФ . Следует учесть, что эта схема БП не имеет защиты от короткого замыкания на выходе (КЗ) и перегрузки.

Схема N2.

Вторая схема собрана на специализированной микросхеме- стабилизаторе напряжения. Это может быть наша КРЕН12 или импортная LM317 . Эта схема проще первой, однако микросхема обеспечивает лучшие характеристики, а также защиту от КЗ, перегрева и перегрузки. Здесь показан вариант со «ступенчатой» регулировкой выходного напряжения. Путём подбора сопротивлений R2-R6 можно устанавливать любое значение напряжения на выходе БП.

Данная микросхема способна выдать от 1,2 до 37 вольт , поэтому диапазон выходных напряжений может быть расширен, в отличие от указанных на схеме значений. Переменное напряжение на входе тоже выбирается в зависимости от необходимого максимального выходного напряжения. Микросхему необходимо установить на теплоотвод.

Уровень пульсаций такой схемы будет на уровне 10 мВ . На выходе БП можно установить дополнительный конденсатор ёмкостью от 100 мкФ, для уменьшения уровня пульсаций.

Рабочие напряжения всех конденсаторов должны быть выше входного напряжения после выпрямителя. Все резисторы могут быть типа МЛТ-0,125 .

Этот БП можно сделать и с плавной регулировкой напряжения на выходе. В этом случае схема предельно упрощается, что видно из третьего рисунка.

Здесь не потребуется производить вообще никаких настроек. Для этого варианта верны все рекомендации, которые были даны для предыдущей схемы со ступенчатой регулировкой.

Читайте также:  Ремонт и обслуживание компьютеров

Спасибо, что дочитали до конца! И я был бы вам благодарен, если бы вы поделились статьёй с друзьями в соцсетях. Отдельное спасибо за лайк и подписку — оставайтесь и далее на канале «ASUTPP»!

Источник

Импульсные блоки питания: принципы работы для новичков — обзор 7 правил построения схемы

Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.

Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.

Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение

Правило №1 всех ИБП: чем выше рабочая частота, тем лучше. Преобразование электроэнергии выполняется не на промышленных 50 герц, а на более высоких сигналах в пределах 1÷100кГц.

За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.

Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Разберем все эти части подробнее.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Сетевой выпрямитель напряжения: самая популярная конструкция

Правило №3: после выхода с фильтра напряжение подается на схему выпрямителя, состоящего в базовой версии из диодного моста и электролитического конденсатора.

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Правило №4: выпрямленный сигнал подвергается широтно-импульсной модуляции на силовом ключе под управлением ШИМ контроллера.

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Правило №5: импульсный трансформатор для блока питания передает каждый ШИМ импульс за счет двух преобразований электромагнитной энергии.

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

  1. вначале на намагничивание сердечника магнитопровода;
  2. затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Продлить ресурс работы электролитических конденсаторов в ИБП можно заменой одного большой мощности несколькими составными. Ток будет распределяться по всем, что вызовет меньший нагрев. А отвод тепла с каждого отдельного происходит лучше.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

  • уменьшенного падения напряжения на прямом включении;
  • и повышенного быстродействия во время обработки высокочастотных импульсов.

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

  • полумостовому;
  • мостовому;
  • или пушпульному принципу построения выходного каскада.

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Читайте также:  Тема Ищу мануал и прибору Ц20 05

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Выходной выпрямитель: самое популярное устройство

Правило №6: сигнал, поступающий с выхода ИБП, выпрямляется и сглаживается.

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.

Схема стабилизации напряжения: как работает

Правило №7: оптимальные условия для работы нагрузки при изменяющихся условиях эксплуатации обеспечивает принцип стабилизации вторичного напряжения.

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.

Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.

Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.

Источник

Блок питания на 12 В своими руками — схема и пошаговая инструкция выполнения работ

Виды блоков питания, их основные технические характеристики

Блок питания является вторичным источником энергии для технических устройств, преобразующим напряжение питающей электрической сети в их рабочее напряжение.

Наиболее востребованными являются блоки питания, у которых первичное напряжение – это переменное напряжение бытовой электрической сети, равное 220 Вольт, а вторичное − преобразуемое в постоянное, равное 24/12/5/3,3 V. По принципу преобразования напряжения блоки питания (БП) подразделяются на два вида:

  • трансформаторные – когда преобразование осуществляется посредством понижающего трансформатора, они называются линейными;
  • импульсные – преобразование осуществляется благодаря наличию электронных компонентов, обеспечивающих преобразование напряжения, они называются инверторными.

Если в схеме БП предусмотрен стабилизатор выходного напряжения, то такое устройство называется стабилизированным блоком питания.

Основными техническими характеристиками, определяющими возможность использования подобных технических устройств, являются:

  • электрическая мощность, измеряемая в Ваттах (Вт или В×А);
  • напряжение на входе и выходе, измеряемое в Вольтах (В);
  • выходной ток, измеряемый в Амперах (А);
  • коэффициент полезного действия – параметр полезный при использовании БП большой мощности, измеряется в %;
  • наличие элементов защиты внутренних электрических цепей от перегрузок и токов короткого замыкания.

Область применения

Блоки питания с вторичным напряжением в 12 Вольт импульсного типа используются для подключения к бытовой электрической сети:

  • персональных компьютеров различного типа – для зарядки их аккумуляторных батарей и работы непосредственно от сети;
  • для зарядки электронных гаджетов, в том числе сотовых телефонов и смартфонов, плееров и видеокамер, а также прочих устройств, имеющих в своей конструкции аккумуляторные батареи;
  • для зарядки ручного переносного электрического инструмента – шуруповёрт, болгарка и т.д.;
  • для подключения LED светотехнических приборов (светодиодные светильники и ленты);
  • для использования прочих устройств, предполагающих работу от сети постоянного тока с напряжением 12 В и до 5 ампер, – автомагнитола или автоприёмник в условиях дома или гаража.

Принципиальная схема и принцип работы

Принципиальная схема и принцип работы зависит от вида устройства, и поэтому необходимо рассмотреть их отдельно:

  • Трансформаторный БП.

Аналоговый вид БП имеет в своей схеме понижающий трансформатор, обеспечивающий величину вторичного напряжения в заданных величинах, и диодный мост, служащий для его выпрямления. Простейшая схема такого устройства выглядит следующим образом:

Принципиальная схема аналогового блока питания

Конденсаторы, установленные в схеме, обеспечивают сглаживание импульсов напряжения на выходе блока питания.

Трансформаторный блок питания

  • Импульсный БП.

Инверторный вид БП работает за счёт электронных компонентов, входящих в схему устройства. Напряжение питающей сети подаётся на входной диодный мост, а его пики сглаживаются установленными конденсаторами. После этого сигнал преобразуется в прочих элементах схемы (транзисторы, микросхема, тиристоры и т.д.) и подаётся на импульсный трансформатор.

Трансформаторы данного вида изготавливаются на основе ферромагнетных материалов, поэтому имеют малые габаритные размеры, позволяющие минимизировать размеры БП. Напряжение, полученное после трансформации, подаётся к нагрузке (выходам блока питания). Такой тип БП называется схемой с гальванической развязкой.

Импульсный блок питания на интегральной микросхеме и с построечными резисторами

Существуют схемы БП без использования гальванического соединения. В этом случае входной сигнал сразу подаётся на фильтр нижних частот.

Импульсный блок питания

Расчёт мощности блока питания на 12 V

Мощность БП является одной из главных технических характеристик, определяющих возможность подключения к нему той или иной нагрузки. Мощность поэтому может быть рассчитана разными способами:

Для светодиодных лент.

В этом случае расчёт выполняется следующим образом:

  • за основу берётся мощность в 1 метра LED-ленты, указываемая производителем на упаковке;
  • определяется её длина;
  • эти значения перемножаются, и полученное выражение увеличивается на 30%.

Увеличение на 30% обеспечивает необходимый запас мощности. Этот расчёт можно выразить следующей формулой:

Pблока = Pуд × Lленты × Kзапаса, где:

Pблока – электрическая мощность блока питания;

Pуд − электрическая мощность 1 метра светодиодной ленты;

Lленты – длина ленты;

Kзапаса — коэффициент запаса мощности.

Для персонального компьютера.

При необходимости определить мощность БП персонального компьютера следует знать мощности всех элементов устройств, входящих в его комплект. Это непростая задача, поэтому существуют специальные программы и онлайн-калькуляторы, служащие для выполнения такого расчёта. Вот некоторые из них:

  • OuterVision® – калькулятор, ссылка для скачивания: https://outervision.com/power-supply-calculator
  • Компания «Enermax», калькулятор питания − ссылка для скачивания: http://www.enermax.outervision.com/index.jsp
  • MSI – калькулятор источника питания, ссылка для скачивания: https://ru.msi.com/power-supply-calculator
  • KSA Power Supply Calculator WorkStation – ссылка для скачивания: http://ksa-soft.ru/soft/10-ksa-power-supply-calculator-workstation.html

Для зарядки электрического инструмента и электронных гаджетов.

Когда необходимо определить мощность БП для зарядки шуруповёрта, смартфона или иного электронного устройства, необходимо знать их электрическую мощность и учесть коэффициент запаса. Это можно отразить следующей формулой:

Pблока = Pустройства × Kзапаса

Диоды для блока питания

Для выпрямления переменного напряжения бытовой электрической сети в схемах блоков питания и прочих электронных устройств используют диоды, собираемые по мостовой схеме. Схематично полупроводниковый диод выглядит следующим образом.

Устройство полупроводникового диода

Для устройства диодного моста используется 4 однотипных диода, которые соединяются определённым образом, приведённым на следующей схеме. Их технические характеристики должны соответствовать величине протекающего через них тока, а также величине допустимого обратного напряжения.

Схема соединения диодов по мостовой схеме

Стабилизация напряжения

Для стабилизации напряжения в БП используются электролитические конденсаторы большой ёмкости и стабилитроны. Конденсаторы сглаживают сигналы напряжения, которые имеют полусинусоидальную форму практически до прямой линии. Чем больше ёмкость конденсатора, тем сигнал на выходе более правильной формы и стремится к прямой линии. Стабилитроны обеспечивают постоянство напряжения на выходе блока питания.

Импульсный блок питания 12 V своими руками — схема

Существует большое количество различных схем блоков питания, имеющих различные технические характеристики и собранных на различных электронных компонентах. Ниже представлена схема импульсного БП с вторичным напряжением 12 Вольт.

Принципиальная схема импульсного блока питания

При самостоятельном изготовлении подобных устройств необходимо помнить, что для обеспечения заданной пульсации напряжения на выходе ёмкость конденсаторов должна приниматься из расчёта 1 мкФ на 1 Вт выходной мощности. Электролитические конденсаторы должны быть рассчитаны на напряжение не менее 350 В. Оптимальное соотношение мощности БП и технических характеристик электронных компонентов приведено в следующей таблице:

Блок питания Элементы схемы
Мощность, кВт Ток, А Ток диода, А Ёмкость конденсатора, мкФ
0,1 0,4 0,2 100
0,2 0,8 0,4 200
0,3 1,2 0,6 300
0,5 2 1 500
1 4 2 1 000
2 8 4 2 000
3 12 6 3 000
5 20 10 5 000

Основные этапы изготовления импульсного блока питания 12 В своими руками

Работу по изготовлению БП можно разбить на несколько этапов: подготовительный, монтаж и проверка работоспособности. В данной статье рассмотрим изготовление блока питания по схеме, приведённой на рисунке № 10.

Подготовительный этап

В этот период рассчитывается мощность. Она должна быть достаточной для его использования с нагрузкой, планируемой к подключению. Выбирается вид и схема БП (см. рисунок № 10), после чего приобретаются необходимые комплектующие. В рассматриваемом случае это:

  • PTC термистор;
  • два конденсатора из расчёта 1 мкФ на 1 Вт мощности;
  • диодный мост (диоды должны соответствовать по напряжению и току);
  • драйвера − IR2152 (IR2153, IR2153D);
  • полевые транзисторы − IRF740, IRF840;
  • трансформатор (можно использовать б/у от ПК);
  • диоды, устанавливаемые на выходе, серии HER.

Монтаж блока питания

Пошаговая инструкция по изготовлению импульсного БП по выше приведённой схеме выглядит следующим образом:

Печатная плата изготавливается, для этого:

Проверка работоспособности

Когда БП собран, необходимо его проверить, для этого:

  • к выходу блока питания подключается нагрузка;
  • БП включается в электрическую сеть.

В случае если подключённая нагрузка работает нормально: LED-светильники излучают свет, гаджеты и инструмент заряжаются, а прочая техника работает – значит, монтаж выполнен успешно. Ещё один способ изготовления блока питания − это размещение всех элементов устройства на ДИН-рейке.

Дин-рейка – это металлическая профилированная полоса, предназначенная для крепления электрических приборов и элементов электрических схем.

При использовании ДИН-рейки отпадает потребность в изготовлении монтажной платы, однако конструкция получается более объёмная, т.к. соединение между элементами схемы приходится выполнять при помощи соединительных проводов.

Нюансы изготовления блока питания для шуруповёрта

При изготовлении блока питания 12 В своими руками для подключения шуруповёрта к электрической сети необходимо учитывать следующие нюансы, связанные с его использованием:

Напряжение на выходе должно быть 18–19 В, в противном случае мощность устройства значительно снизится. Электронные компоненты схемы БП должны соответствовать номинальному току работающего шуруповёрта. Размер собираемого блока должен быть таким, чтобы разместиться в корпусе демонтируемого аккумулятора (в случае изготовления встроенной конструкции).

В остальном этапы изготовления аналогичны, как и в случае отдельно размещаемого варианта исполнения БП.

Где купить и сколько стоит блок питания 12 V

Они продаются в магазинах бытовой электроники, офисной техники, а также в организациях, специализирующихся на их ремонте. Кроме этого, в интернете также есть предложения различных компаний, предлагающих к реализации БП различной направленности.

Блок питания DC-12V, 20.8А, 250 Вт в водонепроницаемом корпусе, степень защиты − IP67

Стоимость БП зависит от их технических характеристик и типа исполнения, определяющих возможность использования этого устройства. Чем выше мощность и степень защиты – тем больше цена. Она может составлять от нескольких сотен до нескольких тысяч рублей. Наиболее дешёвые модели:

  • ARDV-05-12A (12V, 0,4A, 5W) – 200 рублей;
  • ARDV-12-12AW (12V, 1A, 12W) – 300 рублей;
  • ARDV-24-12A (12V, 2A, 24W) – 400 рублей.

Модели в следующем сегменте:

  • APS-100L-12BM (12V, 8.3A, 100W) – 800 рублей;
  • APS-150-12BM (12V, 12.5A, 150W) – 1 000 рублей;
  • APS-250-12BM (12V, 20.8A, 250W) – 1 400 рублей.

Наличие большого количества предложений на рынке вспомогательных устройств для бытовой техники и приборов позволяет выбрать блок питания в соответствии с предъявляемыми к нему требованиям. А наличие в свободном доступе различных схем, а также электронных компонентов позволяет изготовить БП своими руками даже начинающему любителю электроники, имеющему начальные навыки работы с паяльником.

Источник