Меню

Как работают магниты и батарейки

Как работают магниты и батарейки?

Мы начинаем изучать серию поделок, которые можно будет смастерить с помощью магнитов и батареек. Но, прежде чем начать работу, вы можете прочесть кое-что интересное о магнитах и батарейках, и понять, как магнит может магнитить, а батарейка – вырабатывать электрический ток.

Магниты

Магниты заставляют предметы двигаться под действием незримых магнитных сил. Древние греки открыли этот феномен одни из первых.

Ими были случайно найдены неизвестные камни, которые почему-то были способны притягивать куски железа.

Сегодня магниты делают из стали или из смеси металлов и минералов. Их применяют в самых разных приборах от простого выключателя до сложных компьютеров.

Магнитная сила

Сила магнита заметна больше всего на его концах. Эти концы называются полюсами. Один из них поворачивается к северу другой к югу.

Магнитный мир

Планета земля сама ведет себя как огромный магнит и подобно магниту имеет свои полюсы.

Все магниты, подвешенные или плавающие свободно, располагаются по линии север-юг, направленной к магнитным полюсам земли.

Уже давно люди начали пользоваться магнитами, чтобы находить правильный путь. Магнитная стрелка компаса всегда указывает на север.

Это помогает мореплавателям определить направление, не видя ни солнца, ни берегов, ни звезд.

Батарейки

Батарейки позволяют очень просто получать электрический ток. Их способность давать ток

называется напряжением и измеряется в вольтах.

Как работают батарейки

Внутри обычной батарейки находятся два разных металла (или металл и уголь) и химические вещества.

Работая вместе, они создают электрическую энергию. Когда батарейка включена в цепь, ее электрическая энергия начинает использоваться. Истощив свои химические вещества, батарейка перестают действовать.

Источник

Источником энергии может быть магнитный хранитель

Постоянные магниты, безусловно, не являются источником энергии как ископаемые виды топлива, как ветроэнергетика, гидроэнергетика или ядерный синтез.

Магнитный хранитель как источник энергии, запасенной в поле, которая является столь же реальной, как сила, переносимая движущимися телами. Обычно этот тип потенциальной энергии (двигающееся тело имеет кинетическую).

Таким образом, существует энергия, запасенная в магнитном поле, которая окружает и пронизывает постоянный магнит.

Эта сила не является частью самого элемента, а она просто идет при его перемещении, так как она несет свое магнитное поле. Но это чисто вопрос семантики. Дело в том, что есть энергия внутри и вокруг намагниченного куска железа, которая не присутствует вокруг незамагниченного куска железа.

Допустим, если используется один магнит, чтобы подобрать другой. Когда два магнита приближаются, противоположные полюса притягиваются, а одинаковые отталкиваются, противоположно направленные линии магнитного потока компенсируются. Таким образом, как это происходит, количество силы, запасенной в магнитном поле уменьшается. Этот расход позволяет одно тело с полем перемещать против силы тяжести.

Энергия магнита

Вы можете спросить: когда образуется энергия магнита, где она берется, которая в конечном итоге становится частью магнитного поля? На самом деле это довольно интересный вопрос.

Ферромагнетик состоит из большого числа магнитных доменов, выровненных таким образом, что их дипольные моменты параллельны, так что все их поля производят сильное общее поле. Если два диполя изначально выравниваются в определенном порядке, это стоит ресурсов, чтобы выровнять, потому что естественная тенденция для диполя быть в хаотическом порядке.

Диполи выравниваются, если попытаться сталкивать два стержневых магнита таким образом, что северная часть выравнивается с южной.

Таким образом, ресурсы заложенные в систему, чтобы выровнять домены, становятся типа магнитный хранитель как источник энергии.

Закон сохранения энергии утверждает, что она не исчезает и не появляется вновь. Она может быть преобразована из одного типа в другой — от солнечных батарей, которые превращают солнечный свет в электричество или при преобразования природного газа молекул в тепло, которое готовит наш ужин и нагревает наши дома.

Магнетизм является силой, но не имеет энергии. Магнетизм является чрезвычайно полезным для преобразования силы из одной формы в другую. Около 99% электроэнергии, вырабатываемой из ископаемых видов топлива, ядерной и гидроэлектрической и ветра приходит от систем, которые используют магнетизм в процессе преобразования.

Все технологии движения электронов проталкиваются магнетизмом через цепи и генераторы. Поскольку эти заряженные частицы движутся мимо магнитов внутри турбин, они создают поле вокруг них, что влияет на другие заряженные частицы. Эта магнитная сила преобразует силу ветра, угля и ядерного топлива в электричество, которое отправляется в электросети.

Большая часть этой сетки осуществляется с использованием принципов магнетизма. Линии высокого напряжения от электростанций доставляют мощность до трансформаторных станций. Далее электроны перемещаются через большие катушки трансформатора и образовывают магнитные поля, которые изменяют напряжение до безопасного уровня для питания наших тостеров, прикроватных ламп, фена для волос и всего электрического остального.

Генераторы и двигатели гибридных автомобилей используют магниты и в настоящее время исследователи изучают потенциал редкоземельных металлов представляющих исключительно сильные постоянные магниты в составе сплавов редкоземельных элементов.

Около 99% электроэнергии, вырабатываемой из ископаемого топлива, ядерной и гидроэнергетики, ветра приходит из систем, которые используют магнетизм в процессе преобразования.

Относительное движение между электромагнитной обмоткой в генераторе и на выходе обмоток генератора вызывает ток по закону Фарадея.

Источник



Электричество Магнит и его свойства

Виктор Губков Электричество
Что собой представляет электричество, как оно выглядит, как заглянуть внутрь проводника, и как оно рождается в батарейках, каким образом электричество делает металл магнитом, а магнит вновь производит электричество, так же левитация магнита в сверх проводнике. На все эти вопросы, нет ответа, более ста лет, но давайте несколько по новому посмотрим на казалось бы, знакомые вещи.

Иногда что бы рассмотреть не видимые процессы, стоит иначе взглянуть на уже знакомые нам вещи. Предлагаю сделать контролируемое разрушение цинковой батарейки. Итак, если мы накоротко замыкаем, батарейка, начинает интенсивно разрушается, поставив реостат, мы сможем уменьшать или увеличивать разрушение.

Вот ту то, и можно увидеть какие процессы происходят в батарейке при её разрушении. Почему при разомкнутых контактах разрушение слабое, а при замыкании интенсивное. Батарейка с корпусом из цинка, заполнена агрессивным составом, и казалось бы, какая разница агрессивной среде, есть контакт или нет, и как может соединение проводов привести к резкому повышению реакции. На память приходит пример как раскачивая плоский забор с двух сторон можно его завалить, но сколько бы вы не толкали его от себя, у вас ни чего не получится. Вспомним электрическую волну, между проводниками, и приложим к нашему устройству, что мы увидим. Чтобы вырвать молекулу цинка из корпуса, требуется её расшатать.

Читайте также:  Размеры аккумуляторов европейского производства мкостью от 40 до 70 Ач

Итак, если электричество волновой процесс, то на молекулу цинка при замыкании проводов будут действовать две силы, с внутренней стороны и снаружи, волновой процесс расшатает молекулы цинка, вырывая её из металла. При вырывании их, создаётся бегущая волна, по проводникам ударяя с обратной стороны, что делает структуру цинка нестабильной. Создаётся направленное движение волны, от внутренней стороны к внешней, так называемый постоянный ток. Становится понятным, почему батарейка всегда выдаёт полтора вольта, весь процесс распада происходит с одной стороны, в узком участке, поэтому разложение металла всегда будет давать полтора вольта, не зависимо от размеров батарейки. Перед нами контролируемый процесс разрушения, и человечество извлекает энергию разложения металлов. Но чтобы объяснить, как появляется ток от воздействия магнитов, требуется объяснить, как магнитные свойства возникают от электричества.

Магнит и его свойства

О волне в магните меня навело наблюдение за падающей тарахтящей крышкой, скорость вращения вокруг своей оси, и падение, а точка падения всегда смещалась скоростью вращения. Волна подымала и опускала крышку всякий раз чуть меньше прежнего, верхняя точка поднятия крышки соответствовала точки падения, то есть падение происходило по спирали к земле. Если проследить путь, смещающийся точки, и выпрямить спираль падения, то высота падения крышки, будет равняться нескольким метрам. Чем выше скорость вращения, тем дольше падает крышка. Так я увидел многометровое падение, на ровном месте. Желая извлечь выгоду из столь долгого и сконцентрированного падения, я долго размышлял о волне, творящей чудеса. Изучая электричество, я понял, что оно состоит из волнового процесса, а волна в куске металла творит точно такую картину, как и с крышкой. Волна, имея скорость, и пронизывающую способность, должна добираться до середины, и обратно, будучи уловленной, навсегда.

Волновой процесс электричества объясняет работу магнитов. На металлический прут намотана катушка, и по ней пропускается электрический ток, изменяя полярность электричества, меняем полярность магнита. Прямая зависимость от электричества доказывает, магнитные свойства возникают от направленного воздействия, на кусок метала. В нашем случае с магнитом, электрическая волна перемещаясь по проводнику вокруг куска железа, возмущает тонкий верхний слой, как резец от токарного станка углубляется в тело железа виток за витком. Колебания волны направленные к центру и по касательной к железу, стремятся пройти через кусок металла, из за большой скорости успевает пройти по окружности тонкую полосу в теле металла, устремляясь к центру, а достигнув центра, волна вновь устремляется к поверхности, и оказывается запертой. Этим объясняется, почему магниты сохраняют свои свойства, волна как спутник вечно вращается в теле магнита.
В опытах металлические опилки, располагаются вдоль магнитно силовых линий, мы видим срез, на самом деле волна рисует спираль, идущую к центру, Волну проходящую воздушное пространство сносит, указывая на распространение магнитно силовых линий, в иной отличной от металла материи, это Эфир. Под действием магнитно силовых линий, Эфир, в местах прохождения волны становится плотным, для электромагнитного воздействия. Помните как волна собрала опилки, устроив из них себе дорогу. Так проходя Эфир, волна делает его плотным для электромагнитного воздействия, так же как опилки собираются в каркас, собран Эфир, с каждой стороны, со своим вращением.

Магнитно силовые линии одной полярности построят Эфир как расширяющийся гриб у каждого, с разным направлением вращения волны. Скорость электрической волны в магнитно силовых линиях делает Эфир плотным, связывая в каркас, как пластичный кусок материи, Если мы поднесём другой магнит, такой же полярности, с каждой стороны Эфир будет выглядеть как пружина. Когда направление вращения волны будет совпадать, расширяющиеся магнитно силовые линии станут друг для друга как резьба для гайки, стягивая в единый кусок. Притяжение и отталкивание происходит из за расширения магнитно силовых линий в Эфире, если бы не сносило волну в эфире, не было бы эффекта магнита.

Сверхпроводники охлаждённые в азоте, в отличии от Эфира, напротив сузят магнитно силовые линии как линза, и это вызовет уже другой эффект закрепление в теле сверхпроводника. От магнита, магнитно силовые линии проходя через Эфир, расширяются, за тем в сверх проводнике сужаются, и выходя из сверх проводника вновь расширяются. Этим уступом из магнитно силовых линий, в сверхпроводнике, магнит висит в воздухе, так называемая левитация с вращением. Всё это доказывает наличие Эфира, как материи, играющей огромную роль в мироздании.

— Ваш «доклад» требует детального расследования на предмет колебательных контуров, резонации и интерференции т.д.,т.п. — Скажу коротко и понятно каждый химический элемент состоит из атомов и субатомной материи, энергии (квантовая физика), которая находится в постоянной вибрации. Менделеев в своё время создавая периодическую таблицу поместил эфир на самое почётное место. Но после благодаря лжеучёным, которые хотели скрыть настоящее положение вещей в мироздании, чтоб опять знания не достались не посвящённым, упразднили этот элемент. Что касается химическореактивных процессов внутри и с наружи аккумуляторной батарейки, её процессе разрушения, объяснятся следующими факторами кислотощелочная реакция внутри и воздействие атмосферных факторов. При коротком замыкании химический обмен происходит быстрее с выделением тепла и свободных электронов и прочих частиц, элементов реакции на стенки корпуса батарейки. — О вибрации и волновых колебаний; — любой материал, предмет имеют свою «номинированную» частоту, амплитуду, фазу т.п., в данном случае взаимодействие резонансных частот между поверхности твердого пола и падающей мет.крышкой. Упала бы крышка на мягкую поверхность вибрация погасилась быстрее. — А так этот эффект называется интерференцией. — Советую использовать в процессах описания правильную атрибутику,терминологию и т.д.,т.п.

Олег Фальб 01.12.2014 06:44 Заявить о нарушении Олег я самоучка, и могу ошибаться в терминологии, потому прошу заранее прощения.
\\\— Трансформатор так и называется, потому что накапливает и выдаёт, так как имеет сердечник, ТПЮ принцип заложен в резонировании «межполюсных» зазоров в частотах, между макс. и минимум, то есть в пределе диапазонов стоячих волн на разных частотах. — В основном используются два модуля сверху и снизу, другой диапазонный модуль между. \\\

Читайте также:  Аккумулятор для ноутбука PACKARD BELL EasyNote NJ65

Олег левитация в сверх проводнике магнита доказывает, что в магните вращается электричество как спутник над землёй. Стоит поднести электрическую волну к сверх проводнику она начинает взаимодействовать. Мало того закрепляется в нём будто имеет плечи с двух сторон в сверх проводнике. Всё это доказывает что в магните электричество поймано в ловушку, а значит может и должно использоваться. Потому все возникающие эффекты дополнительной энергии всего лишь использование запасённой энергии магнита.

Виктор Губков 01.12.2014 07:35 Заявить о нарушении — Углубитись в состав магнитов, при их зарядке силовые поля формируются в одном направлении замкнутого контура, а не по спирали как электромагнитов, да своего рода генератор постоянных магнитных полей.

Олег Фальб 01.12.2014 07:57 Заявить о нарушении Олег я говорю о классическом магните, используемый вами даёт возможность вынимать из магнита запасённую энергию, и всего лишь. Вообще это перспективное направление создание аккумуляторов на основе магнитов, мгновенный заряд и вечное хранение энергии. Думаю наша страна могла бы стать лидером в производстве таких батарей.

Виктор Губков 01.12.2014 08:38 Заявить о нарушении — Безусловно и такие разработки уже в использовании по всему Миру. Возьмите к примеру заряжаемую пальчиковую батарейку и примагнитьте к неодимовому магниту, она будет сама заряжаться, правда мощность будет минимальной, Я делаю проще притянул к своиму пульту дистанционного управления и переодически пальчиками тереблю или прокручиваю уже более 6 лет не заряжал на устройстве.

Олег Фальб 01.12.2014 08:51 Заявить о нарушении Я имею в виду спиральный генератор http://www.youtube.com/watch?v=IB2t6Ujv3C4 Здесь получают энергию от разряжения магнитной индукции. Однажды я взял два кольцевых магнита и сложил их одинаковыми полюсами друг к другу, в начале они отталкиваются но при минимальном сближении всё таки слипаются. По прошествии нескольких дней я обнаружил их сильно разряженными потерявшими былую силу. Так я узнал что происходит взаимное гашение магнитной индукции, магнитная индукция ушла на сопротивление. Значит можно как в спиральном генераторе извлекать из магнита прежде запасённое электричество. Плюсы данного генератора, мгновенный заряд, и весьма долгое хранение запасённой энергии. В автомобилестроении на электрической тяге, это весьма привлекательная технология.

Виктор Губков 01.12.2014 19:55 Заявить о нарушении ///Коль скорость электричества в магнитной катушке одинаковая, то как может быть волна в ней разная. К примеру, подаём постоянное напряжение на каркас катушки не имеющий сердечника, и получаем магнитную индукцию, из постоянного тока. Здесь не может образоваться волна в принципе, тем более разной амплитуды, так как нет никаких условий.///

Полая катушка имеет точно такое магнитное поле как и постоянный магнит. Значит состав магнита не трансформирует энергию, а накапливает её в том виде как она находится в катушке. Именно по этому мы имеем трансформаторы, где электричество через сердечник передаётся катушке.

Источник

Может ли электромагнит поднять тонну питаясь от обычной батарейки ?

На ответах маил ру недавно спросил, можно ли запитать электромагнит от обычной пальчиковой батарейки, и что бы он поднял тонну груза ?
Вот ссылка на вопрос, если кому интересно, https://otvet.mail.ru/question/210801788

Большинство свято уверено что нет. Но почему ?

Я провел эксперимент, взял магнитопровод от трансформатора микроволновки, сделал обмотку толстой проволокой, и подключил обычный аккумулятор от сотового телефона (был под рукой). Вторая часть магнитопровода примагнитилась с силой более 300 кг ! Физически невозможно разделить их. При этом аккумулятор работал около 30 минут.

Несложно рассчитать, что если взять еще три, четыре магнитопровода и сложить их вместе, то общее усилие превысит тонну. Разумеется диаметр провода нужно будет увеличить (если две обмотки, то провод сложить в два раза, если четыре — в четыре раза). Ток вырастит, усилие тоже. Время работы снизится пропорционально. Можно ли заменить аккумулятор пальчиковой батарейкой ? Ответ да, если это батарейка рассчитана на большие токи (алкалиновая) или это аккумуляторная батарейка. Правда проработает она вряд ли более минуты. Примечательно вот что, в идеальном мире, при обмотке сверхпроводнике (например при низкой температуре), энергия будет тратиться на первоначальное возникновение магнитного поля, а потом она будет практически равна нулю (в теории нулю, но мне сложно в это поверить).

При расчетах окажется что даже одна батарейка может создать большое напряжение магнитного поля и поднять тысячи тонн. Разумеется мы принимаем во внимание тот факт что груз расположен очень близко к магниту, в противном случае энергия будет еще и тратиться на подъем груза, плюс напряженность магнитного поля сильно падает с расстоянием. Как видим все элементарно и формулы просты.

Физика часто подбрасывает удивительные вещи, кажущиеся невозможными на первый взгляд. Но стоит чуть разобраться и все становится на свои места. Вспомним того же Архимеда с его точкой опоры и Землей.

Кстати практически любой трансформатор, даже маленький можно превратить в такой электромагнит и он будет магнититься силой более 50 кг. к тем же плоскогубцам. Довольно интересная игрушка. На ютубе все видели как гвоздь обматывали проволокой и он превращался в электромагнит ? Так вот трансформатор размерами 5 на 5 сантиметров, от обычного блока питания я не смог оторвать от железной пластины, при этом питался он от батарейки. По моему крутая игрушка ) Да, стоит сказать вот еще что — железо должно быть толстое и половина железа магнитится очень плохо, та же ванна — отвратительно. Лучше всего — плоскогубцы. А вот сам магнитопровод от родного трансформатора, намного хуже. Парадокс ? Правда это было лишь с одним трансформатором, с другим все норм. Ах, да, если пластина не достаточно толстая, то магнитное поле «вылезет» сверху из нее, и примагнитит еще что либо — в идеале никакого магнитного поля снаружи не должно быть, только внутри замкнутого магнитопровода. Да и не включайте более чем на несколько секунд игрушку БЕЗ прикладывания толстой пластины, иначе она сильно нагреется и даже загорится. А вот когда уже примагнитит — холодная и работает часами. Ток постоянный, от переменного работает плохо и сильно дрожит. Дрр.. делает в общем. Да и сильно повысить ток не выйдет — произойдет насыщение магнитным полем и дальше игрушка будет только греться.

Читайте также:  Аккумуляторы для КАМАЗ 4 4308 167 лс

Да и для сомневающихся на ютубе есть видео где такая игрушка поднимает рельсу и двух человек на листе металла. Питается от сети, но аварийное питание (а у таких штук по ТБ оно обязательно, у нее идет именно от батарейки).

Картинка взята с инета, на мою мыльницу фоткать не стал.

Источник

Магнитный двигатель Минато: существует ли «рог изобилия» магнитной энергии?

На примере двигателя Минато и аналогичных конструкций рассмотрена возможность использования энергии магнитного поля и трудности, связанные с ее практическим применением.

Магнитный двигатель МинатоВ своей повседневной жизни полевую форму существования материи мы редко замечаем. Разве что, когда падаем. Тогда гравитационное поле становится для нас болезненной реальностью. Но есть одно исключение – поле постоянных магнитов. Практически каждый в детстве играл с ними, с пыхтением пытаясь разорвать два магнита. Или, с таким же азартом, сдвинуть упрямо сопротивляющиеся одноименные полюса.

С возрастом интерес к этому занятию пропадал, или, наоборот, становился предметом серьезных исследований. Идея практического использования магнитного поля появилась задолго до теорий современной физики. И главным в этой идее было стремление использовать «вечную» намагниченность материалов для получения полезной работы или «дармовой» электрической энергии.

Изобретательные попытки практического использования постоянного магнитного поля в двигателях или электрических генераторах не прекращаются и в наши дни. Появление современных редкоземельных магнитов с высокой коэрцитивной силой подогрел интерес к подобным разработкам.

Кохеи МинатоОбилие остроумных конструкций разной степени работоспособности заполонили информационное пространство сети. Среди них выделяется движитель японского изобретателя Кохеи Минато.

Сам Минато по специальности музыкант, но много лет занимается разработкой магнитного двигателя собственной конструкции, изобретенного, по его словам, во время концерта фортепьянной музыки. Трудно сказать, каким музыкантом был Минато, но бизнесменом он оказался хорошим: свой двигатель запатентовал в 46 странах и продолжает этот процесс сегодня.

Необходимо отметить, что современные изобретатели ведут себя довольно непоследовательно. Мечтая осчастливить человечество своими изобретениями и остаться в истории, они с не меньшим старанием стараются скрыть детали своих разработок, надеясь в будущем получить дивиденды с продажи своих идей. Но стоит вспомнить Николу Тесла, когда тот, для продвижения своих трехфазных двигателей, отказался от патентных отчислений фирмы, осваивавшей их выпуск.

Вернемся к магнитному двигателю Минато. Среди множества других, аналогичных конструкций, его изделие выделяется очень высокой экономичностью. Не вдаваясь в детали конструкции магнитного двигателя, которые все равно скрыты в патентных описаниях, необходимо отметить несколько его особенностей.

Магнитный двигатель МинатоВ его магнитном двигателе наборы постоянных магнитов расположены на роторе под определенными углами к оси вращения. Прохождение «мертвой» точки магнитами, которая, по терминологии Минато, называется точкой «коллапса», обеспечивается за счет подачи короткого мощного импульса на электромагнитную катушку статора.

Именно эта особенность и обеспечили конструкции Минато высокую экономичность и бесшумность работы при высоких оборотах вращения. Но утверждение, что КПД двигателя превышает единицу, не имеет под собой никакого основания.

Для анализа магнитного двигателя Минато и похожих конструкций, рассмотрим понятие «скрытой» энергии. Скрытая энергия присуща всем видам топлива: для угля она составляет 33 Дж/грамм; для нефти – 44 Дж/грамм. А вот энергия ядерного топлива оценивается в 43 миллиарда этих единиц. По разным, противоречивым оценкам, скрытая энергия поля постоянного магнита составляет около 30% потенциала ядерного топлива, т.е. это один из самых энергоемких источников энергии.

А вот воспользоваться этой энергией далеко не просто. Если нефть и газ при воспламенении отдает сразу весь свой энергетический потенциал, то с магнитным полем все не так просто. Запасенная в постоянном магните энергия может совершать полезную работу, но конструкция движителей при этом очень сложна. Аналогом магнита может служить аккумулятор очень большой емкости с не менее большим внутренним сопротивлением.

Поэтому сразу возникают несколько проблем: получить большую мощность на валу двигателя при малых его габаритах и массе затруднительно. Магнитный двигатель со временем, по мере расходования запасенной энергии, будет терять свою мощность. Даже предположение о том, что энергия восполняется магнитным полем Земли, не может устранить этот недостаток.

Главным же недостатком является требование прецизионной сборки конструкции двигателей, которое препятствует его массовому освоению. Минато до настоящего времени работает над определением оптимального расположения постоянных магнитов.

Поэтому его обиды на японские корпорации, которые не хотят осваивать изобретение, необоснованны. Любой инженер, при выборе двигателя, в первую очередь поинтересуется его нагрузочными характеристиками, деградацией мощности в течении срока эксплуатации и еще рядом характеристик. Подобной информации по двигателям Минато, как, впрочем, и остальным конструкциям, до настоящего времени нет.

Редкие примеры практического воплощения магнитных двигателей вызывают больше вопросов, чем восхищение. Недавно фирма SEG из Швейцарии объявила о готовности выпускать под заказ компактные генераторы, приводом в которых служит разновидность магнитного двигателя Серла.

Генератор вырабатывает мощность около 15 кВт, имеет размеры 46х61х12см и ресурс работы до 60 МВт-часов. Это соответствует среднему сроку эксплуатации 4000 часов. Но каковы будут характеристики в конце этого периода?

Фирма честно предупреждает, что после этого необходимо повторное намагничивание постоянных магнитов. Что стоит за этой процедурой – неясно, но скорей всего, это полная разборка и замена магнитов в магнитном двигателе. А цена такого генератора составляет более 8500 евро.

Фирма Минато тоже объявила о заключении контракта на изготовление 40000 вентиляторов с магнитными двигателями. Но все эти примеры практического применения единичны. Причем, никто не утверждает при этом, что их устройства имеют КПД больше единицы, и они будут работать «вечно».

Если традиционный асинхронный двигатель выполнить из современных дорогих материалов, например, обмотки из серебра, а магнитопровод из тонкой стальной аморфной ленты (стеклометалл), то при сравнимой с магнитным двигателем цене получим близкий КПД. При этом, асинхронные двигатели будут иметь значительно больший срок службы при простоте изготовления.

Подводя итоги, можно утверждать, что пока удачных конструкций магнитных двигателей, пригодных для массового промышленного освоения, не создано. Те образцы, которые работоспособны, требуют инженерной доводки, дорогих материалов, прецизионной, индивидуальной настройки и не могут конкурировать с уже освоенными типами двигателей. И уж совсем безосновательны утверждения, что эти двигатели могут работать неограниченное время без подвода энергии.

Источник