Меню

Допустимые отклонения напряжения блока питания компьютера

Как выбрать блок питания компьютера.

Содержание

  1. Как выбрать блок питания компьютера?
  2. Мощность блока питания
  3. Сила тока на линии +12 Вольт
  4. Как узнать необходимую для компьютера силу тока по линии +12В?
  5. Как узнать силу тока блока питания по линии +12В
  6. Качество изготовления БП.
  7. Сертификаты 80 PLUS или Коэффициент полезного действия (КПД).
  8. Система коррекции коэффициента мощности (PFC)
  9. Как выбрать блок питания компьютера? Кабели и разъёмы.
  10. Модульность блоков питания
  11. Система охлаждения БП

Как выбрать блок питания компьютера? Как правильно подобрать блок питания, чтобы он служил вам верой и правдой долгие годы?

Ведь в магазинах, несведущему покупателю не редко впаривают туфту за приличные деньги. После прочтения данной статьи, наши читатели сами смогут сделать правильный выбор в магазине, не уповая на консультанта.

Как выбрать блок питания компьютера?

Блок питания – это одно из обязательных комплектующих устройств компьютера. Он подаёт электроэнергию на все внутренние узлы. Блоки питания не редко идут в комплекте с компьютерным корпусом. С точки зрения финансов это выгодно, но такие блоки питания подходят лишь для маломощных офисных компьютеров. Для мощных игровых компьютеров лучше БП купить отдельно. Тогда встаёт вопрос: » Как правильно подобрать блок питания для ПК?»
От правильного выбора блока питания зависит, как долго он прослужит, а также будут ли другие комплектующие компьютера работать в правильных режимах. Поэтому стоит серьёзно к этому отнестись. На какие характеристики стоит заострить своё внимание при выборе БП?

Мощность блока питания

Как определить, какой мощности блок питания вам необходимо купить? Для этого, нужно узнать максимальную потребляемую мощность при пиковых нагрузках вашего процессора, видеокарты, памяти и других подключённых устройств. Потом нужно сложить все эти цифры и полученная сумма будет равна минимальной необходимой мощности БП.
Вот приблизительная потребляемая мощность различными устройствами компьютера (измеряется в ваттах):

  • Материнская плата (до 100W);
  • процессор (колеблется от 25 до 250W в зависимости от модели);
  • кулеры (до 6 W);
  • видеокарта (от 40 до 300W);
  • модули оперативной памяти (около 3 W);
  • жесткие диски и SSD (до 15W);
  • CD/DVD-приводы (до 35 W);

Для расчёта необходимой мощности можно воспользоваться специальными сервисами либо самому произвести расчёт. На официальных сайтах производителей устройств в характеристиках всегда указывается и информация об их мощности.

Сила тока на линии +12 Вольт

Ещё одним важным параметром при выборе блока питания является величина силы тока на линии +12 Вольт. Дело в том, что блок питания преобразует переменный ток с напряжением 220 Вольт из розетки в постоянный с напряжением +3.3 Вольт, +5 Вольт и +12 Вольт. Общая мощность БП складывается из суммы мощностей, которые он выдаёт по каждой из 3-х указанных линий.
• Линия +3.3 Вольт питает планки оперативной памяти
• Линия +5 Вольт питает материнскую плату, SSD диски, жесткие диски и оптические приводы.
• Линия +12 Вольт питает самые энергозависимые устройства компьютера. Это центральный процессор и видеокарта, а также все кулеры (вентиляторы). И на эту линию ложится основная нагрузка.
Некоторые БП не выводят на эту линию (+12В) нужную силу тока. К чему это приводит? Допустим общая необходимая нам мощность при расчёте (это на процессор, материнку и все остальные устройства в компьютере) составила 400 Ватт. И блок питания допустим, тоже соответствует этой общей мощности. Но, если этот блок питания не будет выдавать достаточной мощности по линии +12Вольт, то компьютер не будет работать. Некоторые БП компенсируют необходимую мощность на линиях +3.3В и +3.5В, то есть на линиях где такая мощность в общем то и не особо нужна.
Блок питания нужно выбрать такой, чтобы именно на линии +12В выдавал силу тока для процессора и видеокарты с запасом.

Как узнать необходимую для компьютера силу тока по линии +12В?

Так как по данной линии в компьютере питаются процессор и видеокарта, то необходимо узнать какая максимальная сила тока требуется этим устройствам. Если у вас несколько видеокарт, то нужно сложить необходимую им силу тока тоже. К полученной сумме нужно еще добавить 25% для запаса.
Сила тока необходимая для работы устройства, как правило, указывается в характеристиках на сайте производителя. Если таких данных там нет, то мы можем сами её рассчитать. Из школьного курса физики мы помним (кто то помнит, а кто то и не очень :)), что сила тока измеряется в Амперах (I). Рассчитать силу тока можно с помощью мощности и напряжения. Мощность измеряется в Ваттах (P), а напряжение в Вольтах (U). Сила тока на участке цепи (I) равна отношению мощности тока (P) к напряжению (U).

Мощность тока необходимого для процессора и видеокарты указывается в характеристиках на сайте производителя. А напряжение мы с вами знаем. Это 12 Вольт. Таким образом, чтобы узнать необходимую для компьютера силу тока по +12В нам нужно мощность устройства разделить на 12.

Расчёт: в качестве примера Какая сила тока по линии +12В нужна компьютеру с процессором Intel Core i9-9900 и видеокартой NVIDIA GeForce RTX 3080?
Энергопотребление указанного процессора 65Вт, а видеокарты 320Вт. Расчёт:(320+65)/12+25%=40А

Значит, для такого компа на линии +12Вольт нужна сила тока не менее 40 Ампер.

Как узнать силу тока блока питания по линии +12В

Мы с вами выяснили, как можно вычислить необходимую силу тока на линии +12Вольт для компьютера. А как узнать какую силу тока по линии +12В выдаёт тот или иной блок питания? Очень просто. На крышке самого блока питания указывается сила тока по всем 3 линиям, в том числе и по линии +12В.

Как видно на картинке, БП Air Max общей мощностью 600W по линии +12В выдаёт силу тока в 40(А).

Качество изготовления БП.

Как выбрать блок питания компьютера в магазине? Способов оценки качества БП в магазине у покупателя не много. Но парочку косвенных показателей качества все же стоит затронуть. Это цена и как ни странно вес изделия. Чем тяжелее блок, тем меньше сэкономили на его материалах. В дешёвых БП будет отсутствовать большая часть деталей, которая есть в дорогих моделях. Эти недостающие детали обеспечивают стабильную работу блока питания в условиях высоких нагрузок и перепадов напряжения.

На картинке выше в разобранном виде показана плата дешевого БП. На ней красным обведены места с перемычками, которые у нормальных блоков заменяются дросселями, конденсаторами и другими более надежными элементами.
Такие блоки на много быстрее выходят из строя и вместе с собой могут утащить и более дорогие комплектующие компьютера. Такие блоки питания подойдут для простеньких офисных систем, способных работать только с текстом. Для мощных игровых систем стоит покупать тяжёлые модели от тех производителей, которые уже давно хорошо себя зарекомендовали на рынке блоков питания (Chiftec, Zalman, Thermaltake, Coolermaster, FSP и другие).

Сертификаты 80 PLUS или Коэффициент полезного действия (КПД).

Каждый блок питания имеет свою энергоэффективность, то есть какой процент электроэнергии теряется при преобразовании переменного тока напряжением 220 или 115 вольт в постоянный ток напряжением 12В, 5В и 3.3В. Данный показатель называют коэффициентом полезного действия (сокращённо КПД). 80 PLUS — это программа по развитию энергоэффективности в компьютерных БП. Практически у любого БП КПД бывает выше 60-70%, а стандартно хорошим показателем считается КПД 80% и выше.
Вот таблица классификации уровней энергоэффективности сертификатов.

Источник таблицы: Википедия.
О принадлежности БП к тому или иному стандарту может свидетельствовать соответствующая иконка на крышке.
Если в качестве примера взять блок питания мощностью 600Вт с сертификатом 80 Plus Gold, то при полной нагрузке он будет потреблять 660-682 Вт от сети (600*100/88). Из них 600Вт пойдёт на питание комплектующих компьютера, а 60-82Вт будет идти на нагрев БП. Так как, блоки питания с высоким КПД менее подвержены нагреву, то и необходимость установки на них мощной системы охлаждения отсутствует. Поэтому система охлаждения на таких БП более тихая.
Помимо этого, из таблицы видно, что блоки питания с 80 Plus сертификатами, наилучшую энергоэффективность выдают при нагрузке в 50%. Поэтому нет смысла покупать БП с 1000ВТ и выше для простых систем (которым хватает 400-500Вт), с одной видеокартой и процессором, так как такая система не сможет нагрузить такой БП даже в половину.

Система коррекции коэффициента мощности (PFC)

PFC – Power Factor Correction, в переводе с англ. система коррекции коэффициента мощности. Зачем эта система нужна? Дело в том, что компьютерные блоки питания импульсные и поэтому создают в сети много электромагнитных помех. Те кто в теме знают, что PFC снижают потребляемую блоком «реактивную мощность», другими словами уменьшает помехи. Подробнее можете об этом почитать на Википедии.
PFC бывает 2 видов: пассивный и активный.

  • Пассивная система PFC имеет низкую эффективность (до 75%). Она простая по конструкции, недорогая в производстве и соответственно блоки с такой системой дешевле.
  • Активная система PFC имеет эффективность 95% и выше. Такие системы сложные по конструкции и БП с ними дороже.

Главное преимущество блоков питания с активной системой PFC для покупателя в том, что они менее чувствительны к перепадам напряжения в сети и меньше помех. и если есть возможность, то лучше брать конечно БП с активным PFC, так как у пассивных систем PFC нет никаких преимуществ. Тип системы PFC как правило указывается на крышке блока питания, пометкой типа » Active PFC» и » Passive PFC«.
БП с сертификатом 80PLUS всегда имеют активную систему PFC.

Как выбрать блок питания компьютера? Кабели и разъёмы.

Немаловажным критерием при выборе блока питания является наличие у него всех необходимых кабелей и разъёмов, с помощью которых обеспечиваются питанием все комплектующие компьютера. Как правило у блока питания на сегодняшний день на кабелях 5 основных разновидностей разъёмов:

В блоках питания могут быть и иные разъёмы, но они не обязательны, и без них обычно можно обойтись.

Модульность блоков питания

На некоторых компьютерных блоках питания все кабели можно отстегивать. Такие БП называют модульными. Есть еще модели, где отстегивать можно лишь часть кабелей. Такие модели называют полу модульными. У обычных БП кабели намертво прикреплены и их не отстегнуть, даже если половину из них вы не используете. У таких блоков, чтобы кабели не болтались, их привязывают внутри корпуса компьютера. Болтающиеся кабели внутри корпуса ухудшают циркуляцию воздуха и собирают пыль, что плохо сказывается на системе охлаждения.
Модульные блоки дороже обычных. Преимущества таких блоков в том, что можно отсоединить не используемые кабели. Полу модульные отличаются тем, что в них не все кабели отстегиваются. В них не отстегиваются кабели питания материнской платы и ЦП, так как они используются в любом случае во всех системах.

Читайте также:  Стационарный телефон стандарта CDMA 450 Huawei ETS 2055

Система охлаждения БП

При выборе блока питания компьютера, также стоит уделить внимание системе его охлаждения. Не стоит покупать БП с маленькими вентиляторами (например 80 мм), так как из-за маленькой площади лопастей, такому вентилятору приходится повышать обороты, и это создаёт много шума, не говоря уже о неэффективном охлаждении. Лучше предпочтение отдать блокам питания с большими кулерами. Им для эффективного охлаждения хватает малых оборотов.
Ещё лучше, если на БП установлена пассивная или полу пассивная система охлаждения. В пассивной системе вообще нет кулеров. Но такие блоки дороже. При полу пассивной системе охлаждения, кулер вообще не крутится до определённой нагрузки на БП. Он начинает крутиться при повышении предельно допустимой нагрузки.

Послесловие:
Объёмная получилась статья. Но зато очень информативная. Ознакомившись с информацией из публикации вы уже легко сможете ответить на вопрос: Как выбрать блок питания компьютера?

Источник

Допустимые отклонения напряжения блока питания компьютера

Архитектура персонального компьютераТема 8 — Блок питания Конспект лекции

В системе электропитания персонального компьютера (ПК) применяются:

  • внутренний блок питания, которому мы уделим самое большое внимание в этой лекции;
  • бесперебойный источник питания (Uninterrupted Power Supply, UPS) — это устройство, которое работает как интеллектуальный фильтр прыжков напряжения (рис. 8.1). Он, в случае полного отключения электроэнергии, с помощью встроенных батарей поддерживает работу компьютера на протяжении некоторого времени для сохранности информации, с которой работал пользователь. Компьютер подключается к UPS, а он в свою очередь подключается к сети.

Рисунок 8.1 — Источник бесперебойного питания

  • стабилизатор напряжения — это устройство, которое превращает электрическую энергию, которая на выходе позволяет получить напряжение в пределах заданных пользователем (рис. 8.2).

Рисунок 8.2 – Стабилизатор напряжения

Блок питания – очень важная деталь персонального компьютера, основное назначение которого:

  • преобразование сменного тока 220В на постоянный ток низкого напряжения.
  • формирование напряжения питания, которое необходимо для функционирования всех блоков ПК и распределение напряжения на основные компоненты. Основное напряжение питания компонентов это: +12В, +5В, +3,3В. Существует также дополнительное напряжение: -12В и -5В.
  • стабилизация невысоких сачков напряжения во внешней сети.

Плохой блок питания (БП) может не только послужить причиной нестабильной работы всей системы, с постоянными ее зависанием и перезагрузкой, но и выход из строя ценных комплектующих из-за прыжка напряжения. Много ремонтников подтверждают, что предохранитель в подобных БП, как правило, перегорает последним.

8.2 Электрические параметры и характеристики блоков питания

БП имеет множество электрических параметров, большинство из которых не отмечаются в паспорте. На боковой наклейке блока питания отмечается обычно только несколько основных параметров — рабочие напряжение и мощность.

Мощность блока питания часто обозначают на этикетке большим шрифтом. Мощность блока питания характеризует, сколько он может отдать электрической энергии приборам, которые подключают к нему (материнская плата, видеокарта, жесткий диск и др.). По идее, достаточно суммировать потребления используемых компонентов и выбрать БП немного большей мощности для запаса.

Вообще сегодня, даже для простого настольного неигрового компьютера, покупать блок питания мощностью ниже 350 Ватт просто нет смысла, поскольку выигрыш в цене будет очень небольшим. Лучше иметь «запас прочности» хотя бы до 450, а лучше — до 500-600 Ватт для домашней системы и 1000-1500 Ватт — для мощного игрового «монстра».

Теперь рассмотрим такую характеристику как, стабильность напряжений, которую выдает блок питания. В процессе работы, который идеальный не был бы блок питания, его напряжение меняется. Увеличение напряжения вызывает в первую очередь увеличения токов покоя всех схем, а также изменение параметров схем.

Так, например, для усилителя мощности увеличения напряжения увеличивает его исходную мощность. Увеличенную мощность могут не выдержать некоторые электронные детали и сгореть. Это же увеличение мощности обусловливает увеличение рассеяния мощности электронными элементами, а, значит и рост температуры этих элементов.

Что приведет к перегреву и/или изменению характеристик.

Снижение напряжения наоборот уменьшает ток, и также ухудшает характеристики схем, например амплитуду исходного сигнала. При снижении ниже определенного уровня определенные схемы перестают работать. Особенно до этого чувствительная электроника жестких дисков.

Допустимые отклонения напряжения на линиях блока питания описаны в стандарте ATX и в среднем не должны превышать ±5% от номинала линии.

Для комплексного отображения размера оседания напряжений используют кросс-погрузочную характеристику. Это цветное отображение уровня отклонения напряжения избранной линии при нагрузке двух линий: избранной и +12В.

Перейдем теперь к коэффициенту полезного действия, который показывает сколько потребленной энергии превратилось в полезную энергию. Чем выше КПД, тем меньше надо платить за электроэнергию потребляемую компьютером. Большинство качественных БП имеют похожий КПД, значение которого варьируется в диапазоне не больше 10%.

Как параметр, на который следует обращать внимание при выборе БП, коэффициент мощности менее значительный, но от него зависят другие величины. При малом значении коэффициента мощности будет и малое значение ККД. Как было отмечено выше, корректора коэффициента мощности приносят множество улучшений. Больший коэффициент мощности обусловит снижение тока в сети.

8.3 Неэлектрические параметры и характеристики блоков питания

Перечислим основные неэлектрические параметры БП:

  • размеры ( форм-фактор)
  • диапазон рабочих температур;
  • надежность (время наработки на отказ);
  • уровень шума, создаваемого БП при работе;
  • частота обращения вентилятора БП;
  • вес;
  • длина питательных кабелей;
  • удобство в использовании;
  • экологичность;
  • соответствие государственным и международным стандартам.

8.3.1 Уровень шума

Большинство неэлектрических параметров понятные всем пользователям. Однако остановимся на более актуальных параметрах. Большинство современных блоков питания работают тихо, они имеют уровень шума близко 16 дб. Хотя даже в БП с паспортным уровнем шума 16 дб может быть установленный вентилятор с частотой обращения 2000 об/мин. В этом случае, при нагрузке БП близко 80%, схема управления скоростью обращения вентилятора включит его на максимальные обороты, что приведет к появлению значительного шума, иногда больше чем 30 дб.

8.3.2 Эргономика

Также необходимо уделять внимание удобству и эргономике БП. Использование модульного подключения кабелей питания имеет много преимуществ. Это и более удобное подключение устройств, меньше занятого пространства в корпусе компьютера, что в свою очередь не только удобно, но еще и улучшает охлаждение компонентов компьютера.

Покупая готовый компьютер, пользователи часто не обращают внимание на то, какие кабели и разъемы есть в установленном БП. Однако, когда наступает время «апгрейда», даже самого простого, например, установки еще одного накопителя и жесткого диска, начинаются проблемы из-за банального недостатка свободных разъемов SATA или MOLEX.

Кроме того, куча проводов дешевых БП занимают слишком много места, их приходится заматывать в косички с помощью пластиковых стяжек или обычного скотча, чтобы улучшить воздухообмен внутри системного блока.

В дорогих БП все проводы перемотаны дополнительной изоляцией с использованием пластмассовых стяжек, что позволяет аккуратно помещать провод внутри корпуса и не мешать охлаждению компьютера.

8.3.3 Вес блока

У БП должен быть большой вес! Несложно догадаться, что в погоне за снижением цены безответственные производители экономят на всем: упрощают схему, уменьшают площадь радиаторов, заменяют качественные и большие конденсаторы на маленькие и дешевые. Качественный блок питания должен ощутимо обременять руку, как минимум, двумя килограммами чистого веса.

8.3.4 Большой гарантийный срок

Дешевые БП чаще всего не обеспечиваются никакой гарантией, в лучшем случае — от месяца до трех. На более или менее качественные блоки продавец дает фирменную гарантию производителя не менее, чем полгода. Если же вы нашли БП с гарантией на три года и цена вас устраивает, то следует брать однозначно, только не забудьте обратить внимание на мощность. Доступной цена может оказаться лишь по причине малой мощности.

8.3.5 Упаковка

И, в конце концов, упаковка. Чаще всего недорогие блоки питания упакованы, в лучшем случае, в полиэтиленовую пленку. БП с «именем» имеют значительно серьезнейшую упаковку. В яркой картонной коробке с блоком почти всегда есть набор разных креплений, дополнительные аксессуары, например, фигурная решетка для вентилятора, а также диск с дополнительным ПО для управления блоком, если он имеет такую возможность.

8.4 Строение блока питания на 200В форм-фактора АТХ

Теперь посмотрим, как на печатной плате БП мощностью 200 Вт расположенные элементы. На рисунке 8.3 показаны компоненты в таком порядке:

  1. Конденсаторы, которые выполняют фильтрацию исходных напряжений.
  2. Место не распаянных конденсаторов фильтра исходных напряжений.
  3. Катушки индуктивности, которые выполняют фильтрацию исходных напряжений. Большая катушка играет роль не только фильтра, но еще работает как ферромагнитный стабилизатор. Это позволяет кое-что снизить перекосы напряжений при неравномерной нагрузке разных исходных напряжений.
  4. Микросхема ШИМ-Стабилизатора WT7520.
  5. Радиатор, на котором установленные диоды Шоттки для напряжений +3.3В і +5В, а для напряжения +12В обычные диоды. Необходимо отметить, что часто особенно в старых БП, на этом же радиаторе размещаются дополнительно элементы. Это элементы стабилизации напряжений +5В и +3,3В. В современных БП размещаются на этом радиаторе только диоды Шоттки для всех основных напряжений или полевые транзисторы, которые используются в качестве выпрямителя.
  6. Основной трансформатор, который осуществляет формирование всех напряжений, а также гальваническую развязку с сетью.
  7. Трансформатор, который формирует управляющие напряжения для исходных транзисторов преобразователя.
  8. Трансформатор преобразователя, который формирует напряжение +5В.
  9. Радиатор, на котором размещенные исходные транзисторы преобразователя, а также транзистор преобразователя, который формирует напряжение.
  10. Конденсаторы фильтра сетевого напряжения. Их не обязательно должно быть два. Для формирования двуполярного напряжения и образования средней точки устанавливают два конденсатора равной емкости. Они делят выпрямленное сетевое напряжение пополам, тем самым формируя два напряжения разной полярности, соединенные в общей точке. В схемах с однополярным питанием конденсатор один.
  11. Элементы фильтра сети от гармоник (препятствий), которые генерируются блоком питания.
  12. Диоды диодного моста, которые осуществляют выпрямление сменного напряжения сети.

Рисунок 8.3 — Строение блока питания на 200 В форм-фактора АТХ

Читайте также:  Ремонт импульсного блока питания для новичков 29

8.5 Конструктивные особенности и типы разъемов

Рассмотрим виды разъемов, которые могут присутствовать на БП (рис. 8.4). На задней стенке БП размещается разъем для подключения сетевого кабеля и выключатель. Раньше рядом с разъемом сетевого шнура находился также разъем для подключения сетевого кабеля монитора. Опционально могут быть присутствующими и другие элементы:

  • индикаторы сетевого напряжения, или состояния работы БП;
  • кнопки управления режимом работы вентилятора;
  • кнопка переключения входного сетевого напряжения 110 / 220В;
  • Usb-Порты встроены в блок питания USB hub;
  • др.

На задней стенке все реже размещают вентиляторы, которые оттягивают из БП воздух. Все чаще вентилятор размещают в верхней части блока через большее пространство для установки вентилятора, которое позволяет установить большой и тихий активный элемент охлаждения. На некоторых БП устанавливают даже два вентилятора сверху и позади.

Из передней стенки выходит провод с разъемом подключения питания материнской платы.

Рисунок 8.4 — Конструктивные особенности блока питания

8.6 Производители

Из имеющихся на рынке блоков питания, хорошо зарекомендовали себя следующие производители:

  1. FSP. Блоки питания производятся подразделением Fortron/Source (FSP Group) — SPI Electronic, и являются поставщиками БП для Inwin, Aopen, Zalman.
  2. Inwin. Один из наиболее известных производителей корпусов, ранее использовали блоки вот FSP Group, но в настоящее время наладили свое производство, не менее качественное. Данные блоки питания обычно имеют логотип Powerman.
  3. Sirtec. Блоки данной фирмы продаются под марками High Power, Powerman, Powermanpro, Thermaltake. Рекомендуются к покупке модели 360Вт и выше
  4. Delta/Liteon. В настоящий момент встречаются в корпусах HP, иногда требуют доработки паяльником.

На зарубежном рынке очень популярны блоки питания вроде Antec и Enermax.

Блок питания допустимые отклонения напряжения

Допустимые отклонения напряжения блока питания компьютера

Блок питания в ПК подает различные напряжения на внутренние устройства компьютера через разъемы питания. Эти напряжения не должны быть точными, но они могут изменяться только на определенную величину, называемую допуском .

Если источник питания обеспечивает части компьютера определенным напряжением, выходящим за пределы этого допуска, то устройства, на которые подается питание, могут работать некорректно … или вообще не работать.

Ниже приведена таблица, в которой перечислены допуски для каждой шины напряжения питания в соответствии с версией 2.2 спецификации ATX (PDF) .

Допуски напряжения питания (ATX v2.2)

Таблица допусков блока питанияНоминальное напряжениеДопуск в процентахМинимальное напряжениеМаксимальное напряжение
+ 3,3 В ± 5% +3,135 В +3,465 В
+ 5VDC ± 5% +4,750 В +5,250 В
+ 5VSB ± 5% +4,750 В +5,250 В
-5VDC (если используется) ± 10% -4,500 В -5,500 В
+ 12VDC ± 5% +11.400 В +12.600 В
-12VDC ± 10% -10.800 В — 13.200 В

Power Good Delay

Хорошая задержка питания (PG Delay) — это время, которое требуется блоку питания для полного запуска и подачи правильного напряжения на подключенные устройства.

В соответствии с Руководством по проектированию блоков питания для форм-факторов настольной платформы (PDF) , задержка исправности питания, называемая задержкой PWR_OK в связанном документе, должна составлять от 100 мс до 500 мс.

Power Good Delay также иногда называют PG Delay или PWR_OK Delay

Правильные диапазоны напряжения для шин питания ATX

Блок питания в ПК подает различные напряжения на внутренние устройства компьютера через разъемы питания. Эти напряжения не должны быть точными, но они могут изменяться только на определенную величину, называемую допуском .

Если источник питания обеспечивает части компьютера определенным напряжением, выходящим за пределы этого допуска, то устройства, на которые подается питание, могут работать некорректно … или вообще не работать.

Ниже приведена таблица, в которой перечислены допуски для каждой шины напряжения питания в соответствии с версией 2.2 спецификации ATX (PDF) .

Источник



Требования к сети переменного тока для нормальной работы компьютера.

Требования к сети переменного тока для нормальной работы компьютера.

Для нормальной работы компьютера, напряжение пи­тающей сети должно быть достаточно стабильным, а уровень помех в ней не должен превы­шать предельно допустимой величины. При подключении компьютера к сети переменного тока, от которой питаются устройства большой мощности, перепады на­пряжения, возникающие при включении и выключении этого оборудования, немедленно ска­зываются на его работе. При работе мощных агрегатов в сети могут возникать переходные про­цессы (всплески напряжения) амплитудой до 1000 В и выше, которые могут просто вывести из строя блок питания компьютера. Если для питания компьютера используется от­дельная линия, то и это не исключает появления в ней выбросов напряжения, поскольку это зави­сит от качества всей сети энергоснабжения здания или района. Выбирая место и способ подключения системы к сети, необходимо соблюдать следую­щие правила:

— подключение компьютеров осуществлять к отдельным линиям питания со своими предохранителями (желательно автоматическими);

— перед подключением необходимо проверить сопротивление шины заземления (оно должно быть низким);

— выходное на­пряжение линии должно находиться в допустимых пределах, и не должно быть помех и всплесков напряжения;

— подключение компьютера к сети должно производится с помощью трехштырьковых вилок, нельзя пользоваться переходниками для розеток с двумя гнездами, поскольку система при этом останется
без заземления;

— не пользуйтесь без крайней необходимо­сти удлинителями (выбирайте те из них, которые рассчитаны на подклю­чение мощных потребителей энергии) ведь уровень помех в сети возрастает при увеличении внутреннего сопротивления линии, т.е. чем длиннее соединительные провода и чем меньше их сечение, тем он выше;

— для подключения устройств, не имеющих отношения к компьютерам, лучше использовать другую розетку.

Холодильники, кондиционе­ры, кофеварки, копировальные аппараты, лазерные принтеры, обогреватели, пылесосы и мощные электроинструменты тоже отрицательно влияют на качество питающего компьютер напряжения. Любое из этих устройств, включенное в одну розетку с компьютером, может стать причиной его сбоя. Кроме того копировальные аппараты и лазерные принтеры потребляют слишком большую мощность, и их только из-за этого уже не стоит вклю­чать в одну розетку с компьютером. Нельзя, чтобы вся электросеть офиса представляла со­бой последовательную цепочку проводов и розеток, в этом случае, качество напряжения для компьютеров, подключенных к последним розеткам в этой цепи оставляет желать лучшего.

В компьютерах может эпизодически возникать ошибка контроля на четность с произвольными неповторяющимися адресами, что обычно сви­детельствует о неприятностях в цепях электропитания. Например, ошибка четности возникала каждый раз, когда рядом включали копировальный аппарат, и она перестала появляться сразу же, как только компьютер подключили к отдельной линии.

Радиочастотные помехи возникают в том случае, если поблизости расположен мощный источник радиоизлучения, но и радиоизлучение гораздо меньшей мощности может сказываться на работе компьютера (работа радиотелефона, мобильного телефона). Бороться с такими явлениями сложно, иногда удается избавиться от помех, просто развернув компьютер, поскольку степень воздействия радиосигнала на компьютер зависит от его ориентации. Иногда, например, для устойчивой работы кла­виатуры помогает использование экранированного кабеля для ее подключения. Хороший эффект подавления помех может быть получен если пропустить соединительный кабель через ферритовое кольцо (по­давляются как внешние помехи, воздействующие на систему, так и ее собственное электро­магнитное излучение). Радикально решить проблему, связанную с помехами, можно, только устранив их источ­ник.

Если компьютер предполагается эксплуатиро­вать в неблагоприятных условиях, то стоит подумать о покупке системы, разрабо­танной специально для этого (такие компьютеры стоят значительно дороже, но они надежно защищены). Для таких компьютеров существуют и специальные клавиатуры, защищенные от попадания в них влаги и грязи. Одни из них представляют собой плоские панели с клавишами мембран­ного типа. Набирать на них довольно трудно, поскольку приходится сильно нажимать на кла­виши. Другие похожи на обычные, но все клавиши на них закрыты тонким пластмассовым чехлом-крышкой. Таким чехлом можно закрыть и стандартную клавиатуру, чтобы защитить ее от пыли и грязи.

Даже самые надеж­ные современ­ные отказоустойчивые серверы или дисковые массивы RAID не могут функциони­ровать без надежного электропитания. Если ваше оборудование не снабжено автономными носителями энер­гии, перебои в работе используе­мых источников питания могут приводить к остановке системы. Молния вероятно может ударить где-нибудь поблизости от вашего зда­ния, вызывая броски напряже­ния, обрушивающие тысячи дополнительных вольт на ваши силовые и телефонные линии. Проблемы с электропитанием могут повреждать компьютеры и портить данные. Современная техника представляет достаточно много способов решения этих проблем, некоторые из них основываются на обыкновенном понимании того, как электропитание устроено, и опыте эксплуатации компьютерных систем.

Проблемы электропитания импортного оборудования компьютерных систем ощущается особенно остро так как обеспечение нормальным питанием рассматривается, естественно, с позиций того окружения, в котором работает пользователь зарубежный. Но в российских электросетях более высокое напряжение питания 220 В (колеблется в пределах 210 — 230 В), иная частота сети — 50 Гц против 60 Гц. Такое отличие частот может вызвать повышенную нагрузку на трансформаторы блоков питания. Большой проблемой является для нас небрежный, а часто и неквалифицированный монтаж сети. Только сравнительно недавно электропроводку стали выполнять трехжильным проводом, в котором кроме нейтрали и фазы присутствует еще и земля (куда эта земля будет подключена это отдельный вопрос). Доступность трехфазных электропроводок облегчает решение вопроса предельно допустимой нагрузки на сеть, но порождает ряд других проблем иного рода. Случается, что из-за низкой квалификации, самоуверенности и торопливос­ти при монтаже, разные розетки в одной комнате подклю­чаются к разным фазам, напряжение между которыми составляет 380 В. При небрежном заземлении, которое осуществляется порой в разных точках, могут возникнуть опасные ситуации, поэтому в наших условиях проблему энергоснабжения обычно приходится начинать не с выбора ис­точника бесперебойного питания (ИБП), а с перепланировки силовой электросети. К серьезнейшим недостаткам нашей электросети следует отнести даже не сбои в питании, а импульсы и перенапряжение. Даже для современных устройств с автоматической настройкой на напряжение сети значительно повышенное питание может привести к выходу их из строя. В этой связи при выборе устройства ИБП необходимо поинтересоваться и тем, как оно справляется с повышенным напряжением и с высоковольтными импульсами.

Проблемы с электропитанием можно подразделить на две основные группы: проблемы, ведущие к по­вреждениям оборудования, и про­блемы, вызывающие поврежде­ние данных или приводящие к некорректной работе. Любое напряжение выше 230 В является повышен­ным, любое напряжение ниже 205 В — пониженным. Повышен­ное напряжение может привести к выходу из строя источников пи­тания компьютеров и другого обо­рудования. Электромоторы пере­греваются при пониженном напряжении. Для микрокомпью­теров обычно используют источ­ники питания с автонастройкой, которые, к счастью, устойчивы к пониженному напряжению.

Читайте также:  L7812 Усилитель Звука из Стабилизатора Напряжения

Аномалия в элек­тропитании, которая особенно опасна для компьютеров и элек­троники вообще — это импульс, извест­ный также как крат­ковременное повы­шение, выброс или колебание напряже­ния.

Импульс — это очень короткое повышение на­пряжения, причиной которого мо­жет служить удар молнии в сило­вую линию, включение опреде­ленного типа силовых устройств либо управление двигателем пе­ременной скорости. Типичный импульс, величина которого мо­жет составлять от нескольких со­тен до нескольких тысяч вольт, вызывает серьезное нарушение в работе сети переменного тока, но только на несколько микросекунд.

Отключение энергии — про­блема, требующая наиболее при­стального внимания. Не заметить полную потерю питания дейст­вительно довольно сложно. Кратковременное отключение энергии — длящееся лишь от по­лупериода до пары периодов волны — часто называют выпа­дением питания.

Радиочастотная интерферен­ция ведет к возникновению элект­рошума, который накладывается на предполагаемо чистую, сину­соидальную волну при частоте 50 Гц. И если этому шуму удастся пройти через блок питания в пи­тающую шину компьютера, компьютер может ошибочно ин­терпретировать его как данные.

Когда отдельный компьютер или сеть компьютеров заземляют в нескольких точках, образуются нежелательные контуры заземления. Предпола­гается, что монтаж разводки пи­тания в доме или офисе заземля­ется через одну точку — вход питания (другими словами, через главную распределительную па­нель, по которой электроэнергия подводится к зданию). Если мон­таж сети переменного тока в зда­нии выполнен так, что заземление осуществляется в двух или боль­шем числе точек, то формируется замкнутая цепь, позволяющая то­кам циркулировать через зазем­ление. Проблема токов в земле возникает потому, что все провода обладают различным со­противлением, и токи, циркули­рующие в цепи, вызывают раз­личное падение напряжения в заземленных проводах. И это не­смотря на то, что все они, как предполагается, имеют нулевой потенциал. Различие напряжений может вызвать все что угодно, на­чиная от биений с тактовой часто­той 50 Гц до высокочастотных шу­мов, которые могут вести к неправильной интерпретации данных компьютером.

Существует несколько путей борьбы с проблемами электропи­тания. Первым шагом должна быть корректная оценка исходной ситуации, в которой вы на­ходитесь. Сначала надо удостовериться в правильном подведении проводки ко всем электрическим выходам (в США, напри­мер, правильное подсоединение цепи переменного тока с напря­жением 120 В обеспечивается трехпроводной розеткой, в кото­рой нейтраль — слева, фаза — справа, отверстие снизу — земля, если смотреть на розетку, установленную в стене). Обычные ошибки в подключе­нии проводки проявляются в том, что оказываются перепутаны фаза с нейтралью или заземление с ней­тралью. Некоторые фирмы изготавливают системы мо­ниторинга сети переменного то­ка, вставляющиеся в розетки. Некоторые из этих устройств даже снабжены самописцами, отмеча­ющими на бумаге происходящие скачки и другие аномалии напря­жения. Имеются также системы мониторинга, представляющие собой стационарные устройства, сохраняющие полученные дан­ные в памяти. Большинство силовых систем мониторинга — это самостоя­тельные устройства, которые по­просту подключаются к силовой розетке и измеряют напряжение. Такие устройства можно исполь­зовать без риска быть поражен­ным током. То же самое относит­ся и к тестерам полярности про­водов. Не следует пытать­ся протестировать розетку или распределительную панель руч­ным вольтметром до тех пор, по­ка вы точно не будете знать, что вы делаете. При измерении напряжения необходимо установить многие парамегры. Какова его поляр­ность? Постоянно ли напряжение или изменяется во времени? От­клоняется ли оно от номинально­го? Особенно пристальное внима­ние надо обратить на напряжение в точке использования — розетке, в которую подключен компьютер, а следовательно, проследить пра­вильность подсоединения концов ветвей контура, питающих наиболее важные системы. С целью ди­агностики может оказаться по­лезным измерить напряжение на входе питания.

Если на входе напряжение па­дает ниже допустимых пределов, следует обратиться в обслужива­ющую вас электрослужбу. В большинстве энергетических компаний имеются подразделе­ния, которые тщательно рассмот­рят эту проблему. Выясните, ка­ковы предельные значения напряжения, которое вам будет поставляться. Если входное напряжение (в розетке) отклоняется от номи­нального — оказывается значи­тельно ниже допустимого уров­ня либо заметно падает при подключении емких потребите­лей энергии — это может озна­чать неадекватность вашей про­водной системы или то, что вы подключаете в один контур слишком много потребителей энергии. Чтобы исправить такое положение вещей, попросите своего электрика проверить монтажные схемы электропро­водки, а также просуммируйте всю нагрузку на цепь, чтобы оценить, насколько она соответ­ствует означенным параметрам. В случае перегрузки цепи мож­но перераспределить несколько потребителей энергии на другие контуры питания, модернизиро­вать контур, заменив провода на провода большего сечения или добавить новый контур для час­ти потребителей.

Можно установить питающий контур, который снаб­жает энергией только ком­пьютеры и никакое другое электро­оборудование. Это потребует прокладки пары проводов и за­земления электрического выхода от главной распределительной панели до компьютеров. При таком соединении вы избавлены от па­дения напряжения при включе­нии других типов потребителей, по­скольку их в этом контуре попросту нет.

Обычно, чтобы защититься от бросков напряжения, используют про­ходной фильтр (импульсный подави­тель — transient suppressor). «Активной составляющей» им­пульсного подавителя обычно служит металло-оксидный варистор, являющийся нели­нейным резистором. Металло-оксидный варистор подсо­единяется как шунт между фазой и нейтралью и обладает очень высоким сопротивлением, пока напряже­ние остается ниже некоторого порогового значения, например 280 В. Однако, если напряжение превышает это значение, то сопротивление варистора резко падает и он передает импульс на нейтраль. Еще один тип импульсных пода­вителей — это активный элек­тронный контур, блокирующий цепь от воздействия импульсов.

Радиочастотные фильт­ры (RFI), сделанные из катушек индук­тивности и конденсаторов, прово­дят радиочастоты ниже опре­деленного значения (например, 1 КГц) и сглаживают сигналы вы­ше этой частоты. Частота постав­ляемого промышленно напряже­ния (50 Гц) значительно ниже отсекае­мой частоты, поэтому она переда­ется прямо через фильтр, между тем как радиочастотное колеба­ние, которое обычно меняется в пределах от килогерц до мега­герц, блокируется.

В зависимости от конструктив­ного исполнения, импульсные по­давители и радиочастотные филь­тры могут не отсекать синхронные импульсы или синхронные радио­сигналы. Синхронные сигналы — это сигналы, которые достигают фазы и нейтрали одновременно. Устройством, которое может использоваться для фильтрации синхронных сигналов, является трансформатор. В трансформаторе, в зависимости от тока, текущего в первичной обмот­ке и образующего магнитное поле, индуцируется напряжение во вто­ричной обмотке. Синхронные же импульсы, возникающие в первич­ной обмотке, не вызывают в ней то­ка, поэтому на вторичной обмотке напряжение не индуцируется. Несмотря на то, что синхрон­ные сигналы не пропускаются трансформатором индуктивно, они могут частично проходить че­рез трансформатор из-за наличия емкостных связей. В большинстве трансформаторов первичная и вторичная обмотки причиняют неприятности друг другу, нахо­дясь одна над другой. Изоляция обмоток делает работу трансфор­матора более эффективной. Одна­ко физическая изоляция двух обмоток делает возможным емкостное пропускание синхронных сигналов с первичной на вто­ричную обмотку и наоборот. Трансформаторы с изоляцией снабжены электростатической защитной оболочкой (обычно это лист тяжелой медной фольги), расположенной непосредственно между двумя обмотками или между обмоткой и железной сердцевиной. Чтобы обеспечить отвод высокочастотной составля­ющей, защитная оболочка зазем­ляется; это делается вместо за­мыкания на другую обмотку.

Существуют и иные силовые защитные приспособления, изве­стные как регуляторы мощности или линейные регуляторы. Регу­ляторы мощности часто содер­жат изолированные трансформа­торы; многие из них включают в себя импульсные подавители и радиочастотные фильтры. Неко­торые регуляторы снабжены многопозиционными трансфор­маторами, способными посредст­вом переключателей настраи­вать выходное напряжение.

Источник

Опасны ли просадки напряжения в блоке питания?

Всем привет, дорогие друзья. Рад вас видеть! Качественные БП от некачественных отличаются элементной базой, которая в качественных моделях может выдерживать несколько большие нагрузки.

Но что, если нагрузить некачественный блок питания? В первую очередь — просядет напряжение, а вот чем это чревато — разберемся в данной статье.

Начнем с допустимого

Напряжение на комплектующие не подается идеально равномерно — у блока питания есть пульсации, а системы стабилизации не могут обеспечить «идеальные» 12В.

В компьютере гораздо больше стабилизаторов напряжения, чем вам может показаться. Они служат для того, чтобы не совсем точные 12В с блока питания преобразовать в 12В той точности, на которой комплектующие могут работать (чем выше точность — тем ближе значение к 12В).

Таким образом, допустимый диапазон напряжений — 11.4В — 12.6В. Но что если выйти за рамки этого диапазона?

Опасный рубеж

Меньшее напряжение означает меньший ток при равной его силе. По-простому — силу тока умножаем на напряжение — получаем мощность.

Пускай наша видеокарта потребляет 250 ватт. Для того, чтобы ее запитать, нам нужно подать 21 ампер при напряжении 12 вольт. Если мы снизим напряжение до 11.6, то сила тока вырастет до 22 ампер. А что, если напряжение упало до 10.9? Уже 23 ампера. При этом просадки до 10.9 — все еще оставят компьютер включенными.

Провода начнут сильнее греться, хоть и не критично, но блок не всегда успеет среагировать на просевшее напряжение, чтобы увеличить силу тока там, где это нужно. Как следствие — компьютер может выключиться или перезагрузиться.

Пожалуй, это наилучший исход. Но есть и блоки с групповой стабилизацией: когда на одной линии просадка — напряжение поднимается на всех линиях. Это значит, что при сильной нагрузке на 12В, напряжение на 12В может быть ниже 12В, на 5В — выше 5В.

Смешная ситуация с блоками питания Aerocool VX, у которых групповая стабилизация, но нет защиты от КЗ по линиям 5 и 3.3 вольта. Замыкание на них приведет к сильному повышению напряжения на 12В линии, а вот это чревато уже куда более серьезными последствиями.

Превышение напряжения

Из-за просадки компьютер может выключиться, либо подать большее напряжение на другие линии. Если же напряжение выше, то железо может просто сгореть.

Конечно, сейчас очень много предохранителей везде, где только можно, но факта это не отменяет: компьютер вполне можно спалить, сильно просадив какую-либо линию в дешевом блоке питания.

Для этого должны сойтись все звезды: БП без защит по КЗ на 5 или 3.3В линии, без защит от перегрузки, без защиты от высокого напряжения. Простое замыкание приведет не только к смерти БП, но и к смерти железа, если блок успел поднять напряжение.

Кстати, не забудь подписаться на нашу группу ВК со статьями, смешными картинками, а также обсуждениями и криворуким оператором.

Источник