Меню

Аппаратный и программный мониторинг состояния компонентов компьютера



Методика тестирования блоков питания

Каждая статья будет состоять из трех основных частей: общее описание, тестирование блока питания и подведение итогов, а также, в случае необходимости, в статью будет добавляться вводная часть.

1. Общее описание блока питания включает в себя:

  • описание упаковки, в случае, если она есть
  • описание комплекта поставки БП, если он предусмотрен производителем
  • описание внешнего вида, непосредственно, блока
  • описание комплектных проводов и разъемов на них
  • описание используемого вентилятора
  • описание других элементов, в том числе, внутри блока питания

2. Тестирование блока питания, включает в себя:

  • проверка заявленных значений пульсаций напряжений при не максимальной статичной нагрузке
  • тестирование БП с различными вариантами нагрузки, составляющей до 100 процентов от указанной максимальной выходной мощности
  • тестирование блока питания в составе рабочей станции

Допустимые значения пульсаций и значений выходных напряжений, а также основные требования к блокам питания, приведены в Power Supply Design Guide, последняя версия которого — 2.2.

По первому разделу, я думаю, вопросов не возникнет, а вот пункты второго раздела стоит немного прокомментировать и разъяснить.

Итак, проверка заявленных значений пульсаций напряжений будет производиться при мощности 75% от максимальной, указанной для данной модели блока питания, но с сохранением пропорций токов по каналам, заявленным производителем. Допустимые значения пульсаций и значений выходных напряжений, а также основные требования к блокам питания, приведены в Power Supply Design Guide, последняя версия которого — 2.2.

В основной части тестирования для каждого БП будет примерно рассчитан ряд токов в соответствии с максимальной мощностью, в связи с тем, что в современных системах на линию 12В приходится большая нагрузка, и со временем она имеет тенденцию только возрастать, а также учитывая тот факт, что максимальные токи, указанные производителем, не предназначены для одновременной нагрузки всех каналов.

Расчет максимальных значений токов для тестирования будет производиться по следующим принципам:

  • ток по линии 12В — максимальный
  • токи по линиям 3,3В и 5В в пропорции, примерно, 1:1
  • суммарная мощность линий 3,3В и 5В вычисляется вычитанием из максимальной мощности БП произведения максимального тока по линии 12В на, собственно, напряжение по данной линии. Проще говоря, из максимальной выходной мощности БП вычитается максимально допустимая мощность по каналу 12В, остаток делится на каналы 3,3В и 5В в указанной пропорции.

Тестирование будет заключаться в эксплуатации БП с переменной нагрузкой, составляющей 33, 67 и 100 процентов от заданных токов, рассчитанных в предыдущем пункте. Период смены значений токов будет составлять примерно две минуты. Обращаю внимание, что работа с максимальной (не путать с пиковой) выходной мощностью является штатным режимом работы блока питания.

По результатам тестирования будет составляться отчет, включающий в себя таблицу с цветовой маркировкой полученных значений выходных напряжений.

Тестирование блока питания в составе рабочей станции наиболее приближено к эксплуатации БП в реальных условиях.

В данный момент проводится выбор конфигурации компьютера-стенда, которая имела бы достаточную высокую мощность и хорошую масштабируемость для тестирования различных по своим энергетическим способностям блоков питания.

Временно тестирование будет проводиться на компьютере следующей конфигурации:

  • Процессор AMD Athlon 64 3000+
  • Матплата Кулер GlacialTech 7200
  • Матплата MSI K8N Neo Platinum
  • Оперативная память Patriot LL 512 Мб
  • Видеокарта Gigabyte GV-N66256DP
  • Жесткие диски: 2 HDD Samsung SP 0812C в RAID 0, HDD WD 1600JD
  • Корпус Antec SX630II

Тестирование будет заключаться в прогоне в течение часа демо-роликов из игры FarCry, также для тестов будет использоваться программный пакет CPU RightMark.

Оценка шумовых характеристик будет производиться субъективно.

Для измерения температуры будет использоваться бесконтактный термометр (пирометр) Thermopoint TPT 6 Pro Plus производства Flir Systems.

Измерение скорости вращения вентилятора также планируется, сейчас производится выбор оборудования для этой цели.

Измерение выходных напряжений будет производиться мультиметрами Fluke 111 класса True RMS.

Для измерения пульсаций выходных напряжений будет использоваться 2-х канальный цифровой осицилограф DS-1150 производства EZ Digital, имеющий полосу пропускания 150 МГц.

Для синтеризования нагрузки для блоков питания в ходе тестирования будут применяться три программируемых электронных нагрузочных блока SL-300 производства фирмы Unicorn.

В конце материала следует краткое подведение итогов и перечисление достоинств и недостатков, имеющихся у протестированного устройства, по личному мнению автора.

Источник

Аппаратный и программный мониторинг состояния компонентов компьютера

Уже много раз в наших статьях была подчёркнута необходимость тщательного отслеживания состояния температуры железа. Это связано с тем, что стабильность работы компьютера в целом, как и долговечность отдельных комплектующих, напрямую зависит от их рабочей температуры. Рабочая температура в свою очередь связана с комплексом характеристик и свойств устройств: их энергопотреблением, тепловыделением, рабочим напряжением, частотой. А увеличение частоты вызывает увеличение тепловыделения.

Помимо сугубо технических характеристик, определяющих номинальные температуры устройства, необходимо учитывать и поправочные коэффициенты на условия эксплуатации. В частности, системы охлаждения загрязняются со временем, термопасты и термоинтерфейсы высыхают, твердеют, теряют теплопроводность. Следствием этого становятся перегревы элементов устройства. Например, процессор, который находится в корпусе, год не чистившимся от пыли, будет больше греться на 5–15 градусов!

Работа вентиляторов играет далеко не последнюю роль в установлении температуры компонентов системного блока. Со временем, подшипники изнашиваются, а радиаторы кулера загрязняются, что ухудшает аэродинамику и теплоотвод. Как следствие — все тот же перегрев охлаждаемых узлов.

Блоки питания, как известно, также имеют номинальную мощность, значительно отличающуюся от реальной. Все устройства в системном блоке питаются от +3,3, +5 и +12 В. При этом по тем каналам, по которым они питаются, они потребляют ток. Ток для каждого устройства свой и зависит от его режима работы — при большей загрузке — больший ток; для некоторых устройств это значение постоянно. Сумма потребляемых токов должна быть не больше, а желательно, меньше максимального тока, выдаваемого блоком питания по каждому из каналов выходных напряжений. Ну а мощность, являясь произведением тока и напряжения, также ограничена. Порой устройства по сумме требуют такую мощность, которую реально блок питания выдать не может. В этом случае начинаются просадки по напряжению каналов. Они же могут проявляться при высыхании конденсаторов в блоках питания по мере их старения.

Отдельно стоит сказать о любителях разгона — оверклокерах. Для них соблюдение температурных режимов эксплуатации — залог здоровья их железа. Так что они в первую очередь должны отслеживать состояние компонентов компьютера. Именно для отслеживания состояния устройств и используются средства мониторинга.

Виды и возможности мониторинга

Итак, мониторинг позволяет отслеживать в реальном времени через лог-файлы и графики:

  • температуры (CPU, материнской платы, GPU, HDD, блока питания);
  • напряжения питания (материнской платы, памяти RAM, GPU);
  • скорости вращения вентиляторов и кулеров (CPU, GPU, Aux, корпусных).

Мониторинг бывает аппаратным и программным. Но, строго говоря, любой программный мониторинг все равно использует параметры состояния железа, поэтому является программно-аппаратным. Программное обеспечение позволяет отобразить состояние мониторинговых величин через чтение регистров состояния соответствующих микросхем мониторинга. В свою очередь, микросхемы мониторинга получают информацию с различных датчиков. Таким образом, программное обеспечение не может отображать информацию без системы датчиков и микросхемы мониторинга, а железо, в свою очередь, не имеет возможности отобразить состояние без программного обеспечения (ПО).

Реализация мониторинга

Общая идея мониторинга такова. Аналоговый сигнал снимается с датчиков и подается на входы микросхемы мониторинга. Датчиков великое множество, но нас интересуют в первую очередь термодатчики, тахометрические и источники постоянного напряжения. В качестве термодатчиков могут выступать терморезисторы, термодиоды, термотранзисторы. В зависимости от того, какой узел системы мы наблюдаем (процессор, мосты, винчестер, графический чип) и применяемых в нем датчиков, точность показаний может сильно отличаться. Далее аналоговый сигнал с помощью встроенного в микросхему мониторинга 8-разрядный АЦП преобразует аналоговые сигналы в цифровой двоичный код с заданной точностью и дискретностью. То есть от возможностей микросхемы мониторинга также многое зависит — как точность, так и количество одновременно отслеживаемых параметров, количество подключаемых источников сигнала. После оцифровки данных, они становятся доступными для чтения в определенном регистре. Именно оттуда данные мониторинга и считывает BIOS и ПО мониторинга. Но так как возможности BIOS по считыванию данных ограничены, то лучше пользоваться специальным системным ПО.

Читайте также:  Как рассчитать мощность блока питания

Микросхемы мониторинга

Как уже было сказано, специальные микросхемы мониторинга обеспечивают все большую точность и новые возможности с выпуском каждой новой модификации. Когда-то средства мониторинга встраивались в южный мост чипсетов VIA, таких как VT82C686B, но они обладали небольшими возможностями. Чипсеты Intel такой возможности не имели, поэтому они использовали внешние микросхемы мониторинга LM78 и LM79 фирмы National Semiconductor, W83781D/W83782D/W83783S/W83784R фирмы Winbond.

Сейчас на абсолютном большинстве плат функции мониторинга исполняет микросхема Super IO/Multi IO, которая одновременно реализует функции последовательных и параллельных портов и управление вентиляторами, поэтому она и называется мультиконтроллером. К этой же микросхеме подключается и BIOS EEPROM.

В настоящее время чаще всего встречаются «мультики» Windond W83627THF, W83627EHG; ITE8705F, 8712 °F; Fintek F71882FG. Надо сказать, что некоторые брендовые фирмы типа ASUS иногда используют специальные заказные чипы мониторинга, которые имеют соответствующую маркировку и заточены под конкретные платы.
Рассмотрим часто встречающуюся микросхему ITE8712F.

Она содержит 3 входа от термодатчиков, 8 входов измерения напряжений, вход измерения напряжения батарейки (Vbat), 5 входов с тахометров; встроенный ШИМ-контроллер для управления скоростью вращения вентиляторов с 5 программируемыми выходами. Эта микросхема автоматически определяет аварийные ситуации с остановкой вентиляторов и обеспечивает служебный звук об этом в системный динамик.

По совместительству эта же микросхема содержит в себе два последовательных UART-порта, 1 параллельный порт, контроллер мыши и клавиатуры, а также контроллер floppy-дисковода, GAME-порт и сторожевой таймер. Подключена микросхема через шину LPC, на которую также посажен BIOS ROM.

Мониторинг температур

В первую очередь следует подумать над тем, как снимаются показания температуры с процессора (CPU) и графического процессора. Именно перегрев процессора или срабатывание защиты от перегрева чаще всего вызывает нестабильность работы ПК, в результате чего компьютер выключается. Почти все ноутбуки страдают от перегрева графического чипа. В результате перегрева графический чип со временем выходит из строя, что влечет за собой ремонт ноутбука.
В кристалл чипов встраиваются термодиоды, которые с заданной дискретностью опрашиваются на предмет изменения температуры, но такая система имеют задержку в реагировании. Кстати, в многоядерных процессорах каждое ядро имеет свой термодиод. Графические чипы также имеют встроенный термодиод.

В процессорах предусмотрена защита от перегрева. Для этого в CPU Intel используется сигнал THERMTRIP#. Когда он становится активным (температура превышает TCASEMAX на 20 градусов), то напряжение питания ядра VCC убирается.

Также начиная с Pentium 4 был введен новый сигнал PROCHOT#, который позволяет контролировать достижение максимальной рабочей температуры кристаллом процессора. Это значение откалибровано для каждого блока процессора отдельно в зависимости от их мощности рассеивания и загрузки. Такая дополнительная аналоговая система контроля с отдельным датчиком названа Thermal Monitor, которая действует постоянно, а не с заданной дискретностью. Когда выдается сигнал PROCHOT#, Thermal Monitor задействует механизм модуляции тактовой частоты: в линию тактирования вносятся холостые такты, когда тактовые импульсы не подаются, то есть процессор простаивает. Это позволяет остудить нагретый CPU при большой нагрузке за счет потери производительности. Пороговую температуру, при которой запускается и выключается Thermal Monitor, как правило, можно задать в BIOS CMOS Setup. Графические чипы автоматической защиты от перегрева не имеют. Отслеживать температуру жестких дисков сейчас не менее актуально — чем выше температура его работы, тем скорее он начнет «сыпаться». Узнать температуру HDD можно, считав его SMART-атрибуты. Подробнее о SMART было написано в статье Неисправности жестких дисков и их диагностика.

В последнее время производительность шин чипсета стала высокой, но она не сильно уступает по частоте шине процессора. В частности, это касается частоты шины памяти. Именно из-за высоких частот и нагревается северный мост чипсета, который отвечает за работу с контроллером памяти. Если чипсеты Intel обходятся большими радиаторами, то чипсеты nVidia более критичны к нагреву и требуют уже активного охлаждения. Именно поэтому теперь большинство систем мониторинга позволяют контролировать температуру чипсета материнской платы.

Не следует пренебрегать этими значениями, поскольку многие материнские платы MSI (и не только) на чипсетах nForce выходили из строя именно о перегрева мостов чипсета. Температура работающего процессора должна быть в диапазоне от 30 до 60 градусов в зависимости от модели, чипсета — от 25 до 50, а графического чипа — от 40 до 70.

Мониторинг напряжений

Соблюдение номиналов напряжений, питающих узлы платы — залог стабильной работы. Зачастую некачественные блоки питания под нагрузкой выдают номиналы, меньше требуемых, что приводит к зависанию ПК. Чтобы проконтролировать эти номиналы, они заводятся на входы напряжений микросхемы Super IO. Как правило, диапазон работы встроенного АЦП составляет 0–4,096 В, а шаг квантования — 16 мВ (4,096 В / 256). Для обработки напряжений 5 и 12 В резисторные делители, номиналы элементов которых зависят от контролируемых уровней. Для корректного определения значений от датчиков требуется согласование входных сопротивлений микросхемы мониторинга в зависимости от выходных сопротивлений датчиков с помощью дополнительных последовательных резисторов и схем-повторителей сигнала. Это позволяет достичь максимального соотношения сигнал/шум. Номиналы согласующих резисторов влияют на точность измерения значений напряжений. Зачастую именно из-за такой неправильной схемы включения, пользователь и получает искаженные данные мониторинга.

Обязательно контролируйте напряжения питания: просадка более чем на 0,2–0,3 В может существенно сказаться на стабильности работы.

Мониторинг скоростей вращения вентиляторов

Этот мониторинг жизненно важен: при остановке кулера микросхемы могут просто сгореть от перегрева. Именно поэтому контролируйте данные о вращении всех вентиляторов системы. Помните, что вы увидите только данные о тех вентиляторах и кулерах, которые подключены к материнской плате! Принцип подключения показан на рисунке — для этого требуется 3 контакта. Желтый провод — питание +12 В, подаваемое на вентилятор, красный — данные мониторинга (Fan Out), черный — заземление (GND).

Если вентилятор имеет двухконтактный разъем, то контролировать его скорость вращения невозможно. Если же он имеет 4 контакта для подключения к материнской плате, то он позволяет еще и управлять скоростью его вращения через 4-й провод — коричневый. Обратите внимание, что 3 и 4-контактные разъемы взаимозаменяемы и совместимы, что позволяет подключать как новые, так и старые кулеры.

Программная составляющая мониторинга

Для того, чтобы Вы увидели данные мониторинга, необходимо использовать какое-либо ПО, которое сможет считать эти данные из микросхемы Super IO и представить их в доступном пользователю виде. При этом разные программы работают с разным количеством датчиков и микросхем мониторинга и обладают разной точностью и дискретностью вывода данных в реальном времени.

Вы можете воспользоваться фирменными утилитами, прилагаемыми к материнской плате или видеокарте для мониторинга. Как правило, они позволяют еще и установить пороговые значения параметров, по достижении которых программа будет «бить тревогу». Иногда они точнее всего отображают данные мониторинга с учетом фирменных особенностей конкретной платы.

Рекомендуем использовать бесплатную программу SpeedFan. Программа корректно работает с большинством современных микросхем мониторинга, и кроме того, отслеживает SMART-параметры. Она быстро и достаточно точно, по сравнению с другими программами типа Everest, отображает изменение параметров. Реализована возможность задать способы реагирования на достижение пороговых значений любых параметров и атрибутов: можно послать звук на системный динамик, открыть или закрыть любое приложение, Windows, отослать e-mail или сообщение по локальной сети.

Сервис-инженер , Александр Дудкин

Источник

Аппаратный и программный мониторинг состояния компонентов компьютера

Уже много раз в наших статьях была подчёркнута необходимость тщательного отслеживания состояния температуры железа. Это связано с тем, что стабильность работы компьютера в целом, как и долговечность отдельных комплектующих, напрямую зависит от их рабочей температуры. Рабочая температура в свою очередь связана с комплексом характеристик и свойств устройств: их энергопотреблением, тепловыделением, рабочим напряжением, частотой. А увеличение частоты вызывает увеличение тепловыделения.

Помимо сугубо технических характеристик, определяющих номинальные температуры устройства, необходимо учитывать и поправочные коэффициенты на условия эксплуатации. В частности, системы охлаждения загрязняются со временем, термопасты и термоинтерфейсы высыхают, твердеют, теряют теплопроводность. Следствием этого становятся перегревы элементов устройства. Например, процессор, который находится в корпусе, год не чистившимся от пыли, будет больше греться на 5–15 градусов!

Читайте также:  Блок питания для ноутбуков Lenovo ThinkPad X230 20V 3 25A 7 9 5 5мм

Работа вентиляторов играет далеко не последнюю роль в установлении температуры компонентов системного блока. Со временем, подшипники изнашиваются, а радиаторы кулера загрязняются, что ухудшает аэродинамику и теплоотвод. Как следствие — все тот же перегрев охлаждаемых узлов.

Блоки питания, как известно, также имеют номинальную мощность, значительно отличающуюся от реальной. Все устройства в системном блоке питаются от +3,3, +5 и +12 В. При этом по тем каналам, по которым они питаются, они потребляют ток. Ток для каждого устройства свой и зависит от его режима работы — при большей загрузке — больший ток; для некоторых устройств это значение постоянно. Сумма потребляемых токов должна быть не больше, а желательно, меньше максимального тока, выдаваемого блоком питания по каждому из каналов выходных напряжений. Ну а мощность, являясь произведением тока и напряжения, также ограничена. Порой устройства по сумме требуют такую мощность, которую реально блок питания выдать не может. В этом случае начинаются просадки по напряжению каналов. Они же могут проявляться при высыхании конденсаторов в блоках питания по мере их старения.

Отдельно стоит сказать о любителях разгона — оверклокерах. Для них соблюдение температурных режимов эксплуатации — залог здоровья их железа. Так что они в первую очередь должны отслеживать состояние компонентов компьютера. Именно для отслеживания состояния устройств и используются средства мониторинга.

Виды и возможности мониторинга

Итак, мониторинг позволяет отслеживать в реальном времени через лог-файлы и графики:

  • температуры (CPU, материнской платы, GPU, HDD, блока питания);
  • напряжения питания (материнской платы, памяти RAM, GPU);
  • скорости вращения вентиляторов и кулеров (CPU, GPU, Aux, корпусных).

Мониторинг бывает аппаратным и программным. Но, строго говоря, любой программный мониторинг все равно использует параметры состояния железа, поэтому является программно-аппаратным. Программное обеспечение позволяет отобразить состояние мониторинговых величин через чтение регистров состояния соответствующих микросхем мониторинга. В свою очередь, микросхемы мониторинга получают информацию с различных датчиков. Таким образом, программное обеспечение не может отображать информацию без системы датчиков и микросхемы мониторинга, а железо, в свою очередь, не имеет возможности отобразить состояние без программного обеспечения (ПО).

Реализация мониторинга

Общая идея мониторинга такова. Аналоговый сигнал снимается с датчиков и подается на входы микросхемы мониторинга. Датчиков великое множество, но нас интересуют в первую очередь термодатчики, тахометрические и источники постоянного напряжения. В качестве термодатчиков могут выступать терморезисторы, термодиоды, термотранзисторы. В зависимости от того, какой узел системы мы наблюдаем (процессор, мосты, винчестер, графический чип) и применяемых в нем датчиков, точность показаний может сильно отличаться. Далее аналоговый сигнал с помощью встроенного в микросхему мониторинга 8-разрядный АЦП преобразует аналоговые сигналы в цифровой двоичный код с заданной точностью и дискретностью. То есть от возможностей микросхемы мониторинга также многое зависит — как точность, так и количество одновременно отслеживаемых параметров, количество подключаемых источников сигнала. После оцифровки данных, они становятся доступными для чтения в определенном регистре. Именно оттуда данные мониторинга и считывает BIOS и ПО мониторинга. Но так как возможности BIOS по считыванию данных ограничены, то лучше пользоваться специальным системным ПО.

Микросхемы мониторинга

Как уже было сказано, специальные микросхемы мониторинга обеспечивают все большую точность и новые возможности с выпуском каждой новой модификации. Когда-то средства мониторинга встраивались в южный мост чипсетов VIA, таких как VT82C686B, но они обладали небольшими возможностями. Чипсеты Intel такой возможности не имели, поэтому они использовали внешние микросхемы мониторинга LM78 и LM79 фирмы National Semiconductor, W83781D/W83782D/W83783S/W83784R фирмы Winbond.

Сейчас на абсолютном большинстве плат функции мониторинга исполняет микросхема Super IO/Multi IO, которая одновременно реализует функции последовательных и параллельных портов и управление вентиляторами, поэтому она и называется мультиконтроллером. К этой же микросхеме подключается и BIOS EEPROM.

В настоящее время чаще всего встречаются «мультики» Windond W83627THF, W83627EHG; ITE8705F, 8712 °F; Fintek F71882FG. Надо сказать, что некоторые брендовые фирмы типа ASUS иногда используют специальные заказные чипы мониторинга, которые имеют соответствующую маркировку и заточены под конкретные платы.
Рассмотрим часто встречающуюся микросхему ITE8712F.

Она содержит 3 входа от термодатчиков, 8 входов измерения напряжений, вход измерения напряжения батарейки (Vbat), 5 входов с тахометров; встроенный ШИМ-контроллер для управления скоростью вращения вентиляторов с 5 программируемыми выходами. Эта микросхема автоматически определяет аварийные ситуации с остановкой вентиляторов и обеспечивает служебный звук об этом в системный динамик.

По совместительству эта же микросхема содержит в себе два последовательных UART-порта, 1 параллельный порт, контроллер мыши и клавиатуры, а также контроллер floppy-дисковода, GAME-порт и сторожевой таймер. Подключена микросхема через шину LPC, на которую также посажен BIOS ROM.

Мониторинг температур

В первую очередь следует подумать над тем, как снимаются показания температуры с процессора (CPU) и графического процессора. Именно перегрев процессора или срабатывание защиты от перегрева чаще всего вызывает нестабильность работы ПК, в результате чего компьютер выключается. Почти все ноутбуки страдают от перегрева графического чипа. В результате перегрева графический чип со временем выходит из строя, что влечет за собой ремонт ноутбука.
В кристалл чипов встраиваются термодиоды, которые с заданной дискретностью опрашиваются на предмет изменения температуры, но такая система имеют задержку в реагировании. Кстати, в многоядерных процессорах каждое ядро имеет свой термодиод. Графические чипы также имеют встроенный термодиод.

В процессорах предусмотрена защита от перегрева. Для этого в CPU Intel используется сигнал THERMTRIP#. Когда он становится активным (температура превышает TCASEMAX на 20 градусов), то напряжение питания ядра VCC убирается.

Также начиная с Pentium 4 был введен новый сигнал PROCHOT#, который позволяет контролировать достижение максимальной рабочей температуры кристаллом процессора. Это значение откалибровано для каждого блока процессора отдельно в зависимости от их мощности рассеивания и загрузки. Такая дополнительная аналоговая система контроля с отдельным датчиком названа Thermal Monitor, которая действует постоянно, а не с заданной дискретностью. Когда выдается сигнал PROCHOT#, Thermal Monitor задействует механизм модуляции тактовой частоты: в линию тактирования вносятся холостые такты, когда тактовые импульсы не подаются, то есть процессор простаивает. Это позволяет остудить нагретый CPU при большой нагрузке за счет потери производительности. Пороговую температуру, при которой запускается и выключается Thermal Monitor, как правило, можно задать в BIOS CMOS Setup. Графические чипы автоматической защиты от перегрева не имеют. Отслеживать температуру жестких дисков сейчас не менее актуально — чем выше температура его работы, тем скорее он начнет «сыпаться». Узнать температуру HDD можно, считав его SMART-атрибуты. Подробнее о SMART было написано в статье Неисправности жестких дисков и их диагностика.

В последнее время производительность шин чипсета стала высокой, но она не сильно уступает по частоте шине процессора. В частности, это касается частоты шины памяти. Именно из-за высоких частот и нагревается северный мост чипсета, который отвечает за работу с контроллером памяти. Если чипсеты Intel обходятся большими радиаторами, то чипсеты nVidia более критичны к нагреву и требуют уже активного охлаждения. Именно поэтому теперь большинство систем мониторинга позволяют контролировать температуру чипсета материнской платы.

Не следует пренебрегать этими значениями, поскольку многие материнские платы MSI (и не только) на чипсетах nForce выходили из строя именно о перегрева мостов чипсета. Температура работающего процессора должна быть в диапазоне от 30 до 60 градусов в зависимости от модели, чипсета — от 25 до 50, а графического чипа — от 40 до 70.

Мониторинг напряжений

Соблюдение номиналов напряжений, питающих узлы платы — залог стабильной работы. Зачастую некачественные блоки питания под нагрузкой выдают номиналы, меньше требуемых, что приводит к зависанию ПК. Чтобы проконтролировать эти номиналы, они заводятся на входы напряжений микросхемы Super IO. Как правило, диапазон работы встроенного АЦП составляет 0–4,096 В, а шаг квантования — 16 мВ (4,096 В / 256). Для обработки напряжений 5 и 12 В резисторные делители, номиналы элементов которых зависят от контролируемых уровней. Для корректного определения значений от датчиков требуется согласование входных сопротивлений микросхемы мониторинга в зависимости от выходных сопротивлений датчиков с помощью дополнительных последовательных резисторов и схем-повторителей сигнала. Это позволяет достичь максимального соотношения сигнал/шум. Номиналы согласующих резисторов влияют на точность измерения значений напряжений. Зачастую именно из-за такой неправильной схемы включения, пользователь и получает искаженные данные мониторинга.

Читайте также:  Три совета по выбору блока питания компьютера

Обязательно контролируйте напряжения питания: просадка более чем на 0,2–0,3 В может существенно сказаться на стабильности работы.

Мониторинг скоростей вращения вентиляторов

Этот мониторинг жизненно важен: при остановке кулера микросхемы могут просто сгореть от перегрева. Именно поэтому контролируйте данные о вращении всех вентиляторов системы. Помните, что вы увидите только данные о тех вентиляторах и кулерах, которые подключены к материнской плате! Принцип подключения показан на рисунке — для этого требуется 3 контакта. Желтый провод — питание +12 В, подаваемое на вентилятор, красный — данные мониторинга (Fan Out), черный — заземление (GND).

Если вентилятор имеет двухконтактный разъем, то контролировать его скорость вращения невозможно. Если же он имеет 4 контакта для подключения к материнской плате, то он позволяет еще и управлять скоростью его вращения через 4-й провод — коричневый. Обратите внимание, что 3 и 4-контактные разъемы взаимозаменяемы и совместимы, что позволяет подключать как новые, так и старые кулеры.

Программная составляющая мониторинга

Для того, чтобы Вы увидели данные мониторинга, необходимо использовать какое-либо ПО, которое сможет считать эти данные из микросхемы Super IO и представить их в доступном пользователю виде. При этом разные программы работают с разным количеством датчиков и микросхем мониторинга и обладают разной точностью и дискретностью вывода данных в реальном времени.

Вы можете воспользоваться фирменными утилитами, прилагаемыми к материнской плате или видеокарте для мониторинга. Как правило, они позволяют еще и установить пороговые значения параметров, по достижении которых программа будет «бить тревогу». Иногда они точнее всего отображают данные мониторинга с учетом фирменных особенностей конкретной платы.

Рекомендуем использовать бесплатную программу SpeedFan. Программа корректно работает с большинством современных микросхем мониторинга, и кроме того, отслеживает SMART-параметры. Она быстро и достаточно точно, по сравнению с другими программами типа Everest, отображает изменение параметров. Реализована возможность задать способы реагирования на достижение пороговых значений любых параметров и атрибутов: можно послать звук на системный динамик, открыть или закрыть любое приложение, Windows, отослать e-mail или сообщение по локальной сети.

Сервис-инженер , Александр Дудкин

Источник

Программы для проверки блока питания

Программы для проверки блока питания

Любое комплектующее настольного компьютера или ноутбука рано или поздно может выйти из строя. В таких случаях не обязательно сразу обращаться в сервисный центр — для начала стоит воспользоваться одной из специальных программ, осуществляющих диагностику устройства. Предлагаем рассмотреть самые эффективные решения для проверки блока питания.

ОССТ — это профессиональный инструмент для диагностики системы и комплектующих компьютера, включая блок питания. Главное окно приложения разделено на четыре блока, в каждом из которых доступен тест отдельных компонентов. В нижней части отображаются краткие сведения о железе: модель центрального процессора, его характеристики, материнская плата, а также показатели частот. Разработчики подумали о начинающих пользователях, реализовав удобную систему помощи. Таким образом, достаточно навести курсор на любой пункт или меню и подождать несколько секунд, чтобы появилось описание в соответствующем окошке в нижней части интерфейса.

Главное окно программы OCCT

Раздел «Power Supply» предназначен для проверки блока питания. Алгоритм максимально нагружает систему и определяет, справляется ли устройство со стрессовыми показателями или ему не хватает мощности. Пользователь устанавливает тип тестирования, его длительность, периоды бездействия, версию DirectX, видеокарту, разрешение и дополнительные настройки по типу полноэкранного режима, битности и использования всех логических ядер. Результаты отображаются в виде наглядной инфографики, которую можно распечатать. Имеется русскоязычная локализация, а скачать программу можно бесплатно.

Не рекомендуется производить стресс-тест, если вы не уверены в надежности вашего блока питания. Особенно это актуально для устройств от сомнительных производителей. В таких ситуациях лучше воздержаться от проверки и сразу обратиться в сервисный центр. В противном случае вы рискуете попросту сжечь устройство «сжечь», что чревато негативными последствиями и для других комплектующих.

System Explorer

System Explorer можно считать более продвинутым аналогом «Диспетчера задач», доступного в ОС Windows в качестве стандартного средства. Программа оснащена огромным количеством разнообразных функций, которые могут использоваться для диагностики, тестирования и оптимизации системы. В главном окне отображаются все активные процессы, подключенные устройства, соединения, службы, драйверы, пользователи и т. д. Стоит отметить наличие WMI-браузера, предназначенного для продвинутого управления системой, однако с этим справятся только опытные пользователи, обладающие навыками программирования.

Главное окно программы System Explorer

Приложение работает в автономном режиме, а его иконка сворачивается в трей, откуда можно открыть главное окно, а также ознакомится с мониторингом системы в реальном времени, где отображаются все важнейшие показатели. Еще одна примечательная особенность — функция «Проверка безопасности». Используя обширную базу данных в интернете, программа проверяет все запущенные процессы и выявляет подозрительные экземпляры. Из недостатков выделяют высокую нагрузку, которая постоянно оказывается на компьютер при работе System Explorer.

AIDA64

AIDA64 — это чуть ли не обязательный инструмент в арсенале любого продвинутого пользователя ПК. Он собирает практически все сведения о системе, включая показатели датчиков. Все компоненты разделены по категориям для удобной навигации, а сам интерфейс представляет собой два модуля: в левой части отображаются разделы, а в правой подробная информация по выбранным объектам. Для диагностики предусмотрено множество разнообразных тестов, затрагивающих различные модули компьютера: жесткий диск, кэш и память, графический процессор, монитор и стабильность системы в целом.

Интерфейс программы AIDA64

Главная проблема в том, что с AIDA64 будет сложно справиться малоопытным пользователям, которые слабо разбираются в алгоритмах работы ПК и операционной системы, несмотря на наличие русскоязычного интерфейса. Само приложения является платным, а стоимость формируется в зависимости от выбранной версии: Extreme, Engineer, Business или Network Audit. Каждая из них предназначена для определенных целей и оснащена соответствующими функциями.

PCMark

PCMark — отличная программа для тщательной диагностики компьютера. Разработчики заявляют, что она предназначена преимущественно для офисных компьютеров, однако это не запрещают использовать ее и на других устройствах. Стоит выделить современный интерфейс, выполненный в минималистичном стиле, что существенно облегчает рабочий процесс. Возможна как комплексная проверка, так и выборочная. Предусмотрены следующие виды тестов: видеоконференция, веб-серфинг, запуск простых приложений, редактирование документов, таблиц и других офисных форматов, работа с фотографиями и видеороликами (рендеринг и визуализация), оценка и устранение неисправностей OpenGL, производительность в 3D-играх и т. д.

Главное окно в программе PCMark

Результаты отображаются в виде наглядной таблицы, где все показатели разделены по категориям: «Основные», «Производительность» и «Создание медиаконтента». Их можно экспортировать в виде PDF или XML-документа. Важно упомянуть, что история всех тестов сохраняется на серверах разработчиков PCMark и доступна для всех желающих. Нельзя не отметить качественную русификацию. Столь удобное и эффективное решение для тестирования ПК просто не может быть бесплатным, поэтому для использования придется оформить подписку.

В заключение рассмотрим бесплатный продукт от отечественных разработчиков, работающий примерно по тому же принципу, что и OCCT. Интерфейс приложения поделен на вкладки, в каждой из которых задаются настройки стресс-теста для отдельных компонентов. Таким образом можно определить максимально подходящие условия, при которых требуется проверить работоспособность блока питания и системы охлаждения.

Тест процессора в S&M

Несмотря на устаревший интерфейс, меню выглядит довольно приятно и понятно, также предусмотрен русский язык. На сегодняшний день разработчики перестали поддерживать и обновлять S&M. Однако последнюю версию все еще можно загрузить с официального сайта. При этом многие пользователи до сих пор отмечают ошибки при тестах, которые уже не будут исправлены. Следовательно, рекомендуется использовать это решение только в крайнем случае.

Это были лучшие программы, позволяющие выполнить проверку работоспособности блока питания и оценить его производительность. Большинство из них позволяют диагностировать устройство лишь косвенно, путем увеличения нагрузки на другие компоненты системы, что требует усиленной работы питающего оборудования.

ЗакрытьМы рады, что смогли помочь Вам в решении проблемы.

Помимо этой статьи, на сайте еще 11916 инструкций.
Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

Отблагодарите автора, поделитесь статьей в социальных сетях.

ЗакрытьОпишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Источник